Metamath Proof Explorer


Theorem pwwf

Description: A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion pwwf A R1 On 𝒫 A R1 On

Proof

Step Hyp Ref Expression
1 r1rankidb A R1 On A R1 rank A
2 1 sspwd A R1 On 𝒫 A 𝒫 R1 rank A
3 rankdmr1 rank A dom R1
4 r1sucg rank A dom R1 R1 suc rank A = 𝒫 R1 rank A
5 3 4 ax-mp R1 suc rank A = 𝒫 R1 rank A
6 2 5 sseqtrrdi A R1 On 𝒫 A R1 suc rank A
7 fvex R1 suc rank A V
8 7 elpw2 𝒫 A 𝒫 R1 suc rank A 𝒫 A R1 suc rank A
9 6 8 sylibr A R1 On 𝒫 A 𝒫 R1 suc rank A
10 r1funlim Fun R1 Lim dom R1
11 10 simpri Lim dom R1
12 limsuc Lim dom R1 rank A dom R1 suc rank A dom R1
13 11 12 ax-mp rank A dom R1 suc rank A dom R1
14 3 13 mpbi suc rank A dom R1
15 r1sucg suc rank A dom R1 R1 suc suc rank A = 𝒫 R1 suc rank A
16 14 15 ax-mp R1 suc suc rank A = 𝒫 R1 suc rank A
17 9 16 eleqtrrdi A R1 On 𝒫 A R1 suc suc rank A
18 r1elwf 𝒫 A R1 suc suc rank A 𝒫 A R1 On
19 17 18 syl A R1 On 𝒫 A R1 On
20 r1elssi 𝒫 A R1 On 𝒫 A R1 On
21 pwexr 𝒫 A R1 On A V
22 pwidg A V A 𝒫 A
23 21 22 syl 𝒫 A R1 On A 𝒫 A
24 20 23 sseldd 𝒫 A R1 On A R1 On
25 19 24 impbii A R1 On 𝒫 A R1 On