Metamath Proof Explorer


Theorem pwxpndom

Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion pwxpndom ω A ¬ 𝒫 A A × A

Proof

Step Hyp Ref Expression
1 pwxpndom2 ω A ¬ 𝒫 A A ⊔︀ A × A
2 reldom Rel
3 2 brrelex2i ω A A V
4 3 3 xpexd ω A A × A V
5 djudoml A × A V A V A × A A × A ⊔︀ A
6 4 3 5 syl2anc ω A A × A A × A ⊔︀ A
7 djucomen A × A V A V A × A ⊔︀ A A ⊔︀ A × A
8 4 3 7 syl2anc ω A A × A ⊔︀ A A ⊔︀ A × A
9 domentr A × A A × A ⊔︀ A A × A ⊔︀ A A ⊔︀ A × A A × A A ⊔︀ A × A
10 6 8 9 syl2anc ω A A × A A ⊔︀ A × A
11 domtr 𝒫 A A × A A × A A ⊔︀ A × A 𝒫 A A ⊔︀ A × A
12 11 expcom A × A A ⊔︀ A × A 𝒫 A A × A 𝒫 A A ⊔︀ A × A
13 10 12 syl ω A 𝒫 A A × A 𝒫 A A ⊔︀ A × A
14 1 13 mtod ω A ¬ 𝒫 A A × A