Step |
Hyp |
Ref |
Expression |
1 |
|
pwfseq |
|
2 |
|
reldom |
|
3 |
2
|
brrelex2i |
|
4 |
|
df1o2 |
|
5 |
4
|
oveq2i |
|
6 |
|
id |
|
7 |
|
0ex |
|
8 |
7
|
a1i |
|
9 |
6 8
|
mapsnend |
|
10 |
5 9
|
eqbrtrid |
|
11 |
|
ensym |
|
12 |
3 10 11
|
3syl |
|
13 |
|
map2xp |
|
14 |
|
ensym |
|
15 |
3 13 14
|
3syl |
|
16 |
|
elmapi |
|
17 |
16
|
fdmd |
|
18 |
17
|
adantr |
|
19 |
|
1oex |
|
20 |
19
|
sucid |
|
21 |
|
df-2o |
|
22 |
20 21
|
eleqtrri |
|
23 |
|
1on |
|
24 |
23
|
onirri |
|
25 |
|
nelneq2 |
|
26 |
22 24 25
|
mp2an |
|
27 |
|
elmapi |
|
28 |
27
|
fdmd |
|
29 |
28
|
adantl |
|
30 |
29
|
eqeq1d |
|
31 |
26 30
|
mtbiri |
|
32 |
18 31
|
pm2.65i |
|
33 |
|
elin |
|
34 |
32 33
|
mtbir |
|
35 |
34
|
a1i |
|
36 |
35
|
eq0rdv |
|
37 |
|
djuenun |
|
38 |
12 15 36 37
|
syl3anc |
|
39 |
|
omex |
|
40 |
|
ovex |
|
41 |
39 40
|
iunex |
|
42 |
|
1onn |
|
43 |
|
oveq2 |
|
44 |
43
|
ssiun2s |
|
45 |
42 44
|
ax-mp |
|
46 |
|
2onn |
|
47 |
|
oveq2 |
|
48 |
47
|
ssiun2s |
|
49 |
46 48
|
ax-mp |
|
50 |
45 49
|
unssi |
|
51 |
|
ssdomg |
|
52 |
41 50 51
|
mp2 |
|
53 |
|
endomtr |
|
54 |
38 52 53
|
sylancl |
|
55 |
|
domtr |
|
56 |
55
|
expcom |
|
57 |
54 56
|
syl |
|
58 |
1 57
|
mtod |
|