| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwfseq |
|
| 2 |
|
reldom |
|
| 3 |
2
|
brrelex2i |
|
| 4 |
|
df1o2 |
|
| 5 |
4
|
oveq2i |
|
| 6 |
|
id |
|
| 7 |
|
0ex |
|
| 8 |
7
|
a1i |
|
| 9 |
6 8
|
mapsnend |
|
| 10 |
5 9
|
eqbrtrid |
|
| 11 |
|
ensym |
|
| 12 |
3 10 11
|
3syl |
|
| 13 |
|
map2xp |
|
| 14 |
|
ensym |
|
| 15 |
3 13 14
|
3syl |
|
| 16 |
|
elmapi |
|
| 17 |
16
|
fdmd |
|
| 18 |
17
|
adantr |
|
| 19 |
|
1oex |
|
| 20 |
19
|
sucid |
|
| 21 |
|
df-2o |
|
| 22 |
20 21
|
eleqtrri |
|
| 23 |
|
1on |
|
| 24 |
23
|
onirri |
|
| 25 |
|
nelneq2 |
|
| 26 |
22 24 25
|
mp2an |
|
| 27 |
|
elmapi |
|
| 28 |
27
|
fdmd |
|
| 29 |
28
|
adantl |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
26 30
|
mtbiri |
|
| 32 |
18 31
|
pm2.65i |
|
| 33 |
|
elin |
|
| 34 |
32 33
|
mtbir |
|
| 35 |
34
|
a1i |
|
| 36 |
35
|
eq0rdv |
|
| 37 |
|
djuenun |
|
| 38 |
12 15 36 37
|
syl3anc |
|
| 39 |
|
omex |
|
| 40 |
|
ovex |
|
| 41 |
39 40
|
iunex |
|
| 42 |
|
1onn |
|
| 43 |
|
oveq2 |
|
| 44 |
43
|
ssiun2s |
|
| 45 |
42 44
|
ax-mp |
|
| 46 |
|
2onn |
|
| 47 |
|
oveq2 |
|
| 48 |
47
|
ssiun2s |
|
| 49 |
46 48
|
ax-mp |
|
| 50 |
45 49
|
unssi |
|
| 51 |
|
ssdomg |
|
| 52 |
41 50 51
|
mp2 |
|
| 53 |
|
endomtr |
|
| 54 |
38 52 53
|
sylancl |
|
| 55 |
|
domtr |
|
| 56 |
55
|
expcom |
|
| 57 |
54 56
|
syl |
|
| 58 |
1 57
|
mtod |
|