Step |
Hyp |
Ref |
Expression |
1 |
|
lawcos.1 |
|
2 |
|
lawcos.2 |
|
3 |
|
lawcos.3 |
|
4 |
|
lawcos.4 |
|
5 |
|
lawcos.5 |
|
6 |
1 2 3 4 5
|
lawcos |
|
7 |
6
|
3adant3 |
|
8 |
|
elpri |
|
9 |
|
fveq2 |
|
10 |
|
coshalfpi |
|
11 |
9 10
|
eqtrdi |
|
12 |
|
fveq2 |
|
13 |
|
cosneghalfpi |
|
14 |
12 13
|
eqtrdi |
|
15 |
11 14
|
jaoi |
|
16 |
8 15
|
syl |
|
17 |
16
|
3ad2ant3 |
|
18 |
17
|
oveq2d |
|
19 |
|
subcl |
|
20 |
19
|
3adant1 |
|
21 |
20
|
3ad2ant1 |
|
22 |
21
|
abscld |
|
23 |
22
|
recnd |
|
24 |
2 23
|
eqeltrid |
|
25 |
|
subcl |
|
26 |
25
|
3adant2 |
|
27 |
26
|
3ad2ant1 |
|
28 |
27
|
abscld |
|
29 |
28
|
recnd |
|
30 |
3 29
|
eqeltrid |
|
31 |
24 30
|
mulcld |
|
32 |
31
|
mul01d |
|
33 |
18 32
|
eqtrd |
|
34 |
33
|
oveq2d |
|
35 |
|
2t0e0 |
|
36 |
34 35
|
eqtrdi |
|
37 |
36
|
oveq2d |
|
38 |
24
|
sqcld |
|
39 |
30
|
sqcld |
|
40 |
38 39
|
addcld |
|
41 |
40
|
subid1d |
|
42 |
7 37 41
|
3eqtrd |
|