Step |
Hyp |
Ref |
Expression |
1 |
|
divgcdodd |
|
2 |
1
|
3adant3 |
|
3 |
2
|
adantr |
|
4 |
|
pythagtriplem19 |
|
5 |
4
|
3expia |
|
6 |
|
simp12 |
|
7 |
|
simp11 |
|
8 |
|
simp13 |
|
9 |
|
nnsqcl |
|
10 |
9
|
nncnd |
|
11 |
10
|
3ad2ant1 |
|
12 |
|
nnsqcl |
|
13 |
12
|
nncnd |
|
14 |
13
|
3ad2ant2 |
|
15 |
11 14
|
addcomd |
|
16 |
15
|
eqeq1d |
|
17 |
16
|
biimpa |
|
18 |
17
|
3adant3 |
|
19 |
|
nnz |
|
20 |
19
|
3ad2ant1 |
|
21 |
|
nnz |
|
22 |
21
|
3ad2ant2 |
|
23 |
22
|
adantr |
|
24 |
|
gcdcom |
|
25 |
20 23 24
|
syl2an2r |
|
26 |
25
|
oveq2d |
|
27 |
26
|
breq2d |
|
28 |
27
|
notbid |
|
29 |
28
|
biimp3a |
|
30 |
|
pythagtriplem19 |
|
31 |
6 7 8 18 29 30
|
syl311anc |
|
32 |
31
|
3expia |
|
33 |
5 32
|
orim12d |
|
34 |
3 33
|
mpd |
|
35 |
|
ovex |
|
36 |
|
ovex |
|
37 |
|
preq12bg |
|
38 |
35 36 37
|
mpanr12 |
|
39 |
38
|
anbi1d |
|
40 |
39
|
rexbidv |
|
41 |
40
|
2rexbidv |
|
42 |
|
andir |
|
43 |
|
df-3an |
|
44 |
|
df-3an |
|
45 |
43 44
|
orbi12i |
|
46 |
|
3ancoma |
|
47 |
46
|
orbi2i |
|
48 |
42 45 47
|
3bitr2i |
|
49 |
48
|
rexbii |
|
50 |
49
|
2rexbii |
|
51 |
|
r19.43 |
|
52 |
51
|
2rexbii |
|
53 |
|
r19.43 |
|
54 |
53
|
rexbii |
|
55 |
|
r19.43 |
|
56 |
54 55
|
bitri |
|
57 |
52 56
|
bitri |
|
58 |
50 57
|
bitri |
|
59 |
41 58
|
bitrdi |
|
60 |
59
|
3adant3 |
|
61 |
60
|
adantr |
|
62 |
34 61
|
mpbird |
|
63 |
62
|
ex |
|
64 |
|
pythagtriplem2 |
|
65 |
64
|
3adant3 |
|
66 |
63 65
|
impbid |
|