Step |
Hyp |
Ref |
Expression |
1 |
|
nncn |
|
2 |
|
nncn |
|
3 |
|
nncn |
|
4 |
|
sqcl |
|
5 |
4
|
adantl |
|
6 |
5
|
sqcld |
|
7 |
|
2cn |
|
8 |
|
sqcl |
|
9 |
|
mulcl |
|
10 |
4 8 9
|
syl2anr |
|
11 |
|
mulcl |
|
12 |
7 10 11
|
sylancr |
|
13 |
6 12
|
subcld |
|
14 |
8
|
adantr |
|
15 |
14
|
sqcld |
|
16 |
|
mulcl |
|
17 |
16
|
ancoms |
|
18 |
|
mulcl |
|
19 |
7 17 18
|
sylancr |
|
20 |
19
|
sqcld |
|
21 |
13 15 20
|
add32d |
|
22 |
6 12 20
|
subadd23d |
|
23 |
|
sqmul |
|
24 |
7 17 23
|
sylancr |
|
25 |
|
sq2 |
|
26 |
25
|
a1i |
|
27 |
|
sqmul |
|
28 |
27
|
ancoms |
|
29 |
26 28
|
oveq12d |
|
30 |
24 29
|
eqtrd |
|
31 |
30
|
oveq1d |
|
32 |
|
4cn |
|
33 |
|
subdir |
|
34 |
32 7 10 33
|
mp3an12i |
|
35 |
|
2p2e4 |
|
36 |
32 7 7 35
|
subaddrii |
|
37 |
36
|
oveq1i |
|
38 |
34 37
|
eqtr3di |
|
39 |
31 38
|
eqtrd |
|
40 |
39
|
oveq2d |
|
41 |
22 40
|
eqtrd |
|
42 |
41
|
oveq1d |
|
43 |
21 42
|
eqtrd |
|
44 |
|
binom2sub |
|
45 |
4 8 44
|
syl2anr |
|
46 |
45
|
oveq1d |
|
47 |
|
binom2 |
|
48 |
4 8 47
|
syl2anr |
|
49 |
43 46 48
|
3eqtr4d |
|
50 |
49
|
3adant3 |
|
51 |
50
|
oveq2d |
|
52 |
|
simp3 |
|
53 |
4
|
3ad2ant2 |
|
54 |
8
|
3ad2ant1 |
|
55 |
53 54
|
subcld |
|
56 |
52 55
|
sqmuld |
|
57 |
17
|
3adant3 |
|
58 |
7 57 18
|
sylancr |
|
59 |
52 58
|
sqmuld |
|
60 |
56 59
|
oveq12d |
|
61 |
|
sqcl |
|
62 |
61
|
3ad2ant3 |
|
63 |
55
|
sqcld |
|
64 |
58
|
sqcld |
|
65 |
62 63 64
|
adddid |
|
66 |
60 65
|
eqtr4d |
|
67 |
53 54
|
addcld |
|
68 |
52 67
|
sqmuld |
|
69 |
51 66 68
|
3eqtr4d |
|
70 |
1 2 3 69
|
syl3an |
|
71 |
|
oveq1 |
|
72 |
|
oveq1 |
|
73 |
71 72
|
oveqan12d |
|
74 |
73
|
3adant3 |
|
75 |
|
oveq1 |
|
76 |
75
|
3ad2ant3 |
|
77 |
74 76
|
eqeq12d |
|
78 |
70 77
|
syl5ibrcom |
|
79 |
78
|
3expa |
|
80 |
79
|
rexlimdva |
|
81 |
80
|
rexlimivv |
|