Metamath Proof Explorer


Theorem pythagtriplem10

Description: Lemma for pythagtrip . Show that C - B is positive. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem10 A B C A 2 + B 2 = C 2 0 < C B

Proof

Step Hyp Ref Expression
1 nnre A A
2 1 3ad2ant1 A B C A
3 nnne0 A A 0
4 3 3ad2ant1 A B C A 0
5 2 4 sqgt0d A B C 0 < A 2
6 2 resqcld A B C A 2
7 nnre B B
8 7 3ad2ant2 A B C B
9 8 resqcld A B C B 2
10 6 9 ltaddpos2d A B C 0 < A 2 B 2 < A 2 + B 2
11 5 10 mpbid A B C B 2 < A 2 + B 2
12 11 adantr A B C A 2 + B 2 = C 2 B 2 < A 2 + B 2
13 simpr A B C A 2 + B 2 = C 2 A 2 + B 2 = C 2
14 12 13 breqtrd A B C A 2 + B 2 = C 2 B 2 < C 2
15 8 adantr A B C A 2 + B 2 = C 2 B
16 nnre C C
17 16 3ad2ant3 A B C C
18 17 adantr A B C A 2 + B 2 = C 2 C
19 nnnn0 B B 0
20 19 nn0ge0d B 0 B
21 20 3ad2ant2 A B C 0 B
22 21 adantr A B C A 2 + B 2 = C 2 0 B
23 nnnn0 C C 0
24 23 nn0ge0d C 0 C
25 24 3ad2ant3 A B C 0 C
26 25 adantr A B C A 2 + B 2 = C 2 0 C
27 15 18 22 26 lt2sqd A B C A 2 + B 2 = C 2 B < C B 2 < C 2
28 14 27 mpbird A B C A 2 + B 2 = C 2 B < C
29 15 18 posdifd A B C A 2 + B 2 = C 2 B < C 0 < C B
30 28 29 mpbid A B C A 2 + B 2 = C 2 0 < C B