Step |
Hyp |
Ref |
Expression |
1 |
|
pythagtriplem13.1 |
|
2 |
|
pythagtriplem9 |
|
3 |
2
|
nnzd |
|
4 |
|
simp3r |
|
5 |
|
2z |
|
6 |
|
simp3 |
|
7 |
|
simp2 |
|
8 |
6 7
|
nnaddcld |
|
9 |
8
|
nnzd |
|
10 |
9
|
3ad2ant1 |
|
11 |
|
nnz |
|
12 |
11
|
3ad2ant1 |
|
13 |
12
|
3ad2ant1 |
|
14 |
|
dvdsgcdb |
|
15 |
5 10 13 14
|
mp3an2i |
|
16 |
15
|
biimpar |
|
17 |
16
|
simprd |
|
18 |
4 17
|
mtand |
|
19 |
|
pythagtriplem7 |
|
20 |
19
|
breq2d |
|
21 |
18 20
|
mtbird |
|
22 |
|
pythagtriplem8 |
|
23 |
22
|
nnzd |
|
24 |
|
nnz |
|
25 |
24
|
3ad2ant3 |
|
26 |
|
nnz |
|
27 |
26
|
3ad2ant2 |
|
28 |
25 27
|
zsubcld |
|
29 |
28
|
3ad2ant1 |
|
30 |
|
dvdsgcdb |
|
31 |
5 29 13 30
|
mp3an2i |
|
32 |
31
|
biimpar |
|
33 |
32
|
simprd |
|
34 |
4 33
|
mtand |
|
35 |
|
pythagtriplem6 |
|
36 |
35
|
breq2d |
|
37 |
34 36
|
mtbird |
|
38 |
|
omoe |
|
39 |
3 21 23 37 38
|
syl22anc |
|
40 |
28
|
zred |
|
41 |
40
|
3ad2ant1 |
|
42 |
|
simp13 |
|
43 |
42
|
nnred |
|
44 |
8
|
nnred |
|
45 |
44
|
3ad2ant1 |
|
46 |
|
nnrp |
|
47 |
46
|
3ad2ant2 |
|
48 |
47
|
3ad2ant1 |
|
49 |
43 48
|
ltsubrpd |
|
50 |
|
nngt0 |
|
51 |
50
|
3ad2ant2 |
|
52 |
51
|
3ad2ant1 |
|
53 |
|
simp12 |
|
54 |
53
|
nnred |
|
55 |
54 43
|
ltaddposd |
|
56 |
52 55
|
mpbid |
|
57 |
41 43 45 49 56
|
lttrd |
|
58 |
|
pythagtriplem10 |
|
59 |
58
|
3adant3 |
|
60 |
|
0re |
|
61 |
|
ltle |
|
62 |
60 61
|
mpan |
|
63 |
41 59 62
|
sylc |
|
64 |
|
nngt0 |
|
65 |
64
|
3ad2ant3 |
|
66 |
65
|
3ad2ant1 |
|
67 |
43 54 66 52
|
addgt0d |
|
68 |
|
ltle |
|
69 |
60 68
|
mpan |
|
70 |
45 67 69
|
sylc |
|
71 |
41 63 45 70
|
sqrtltd |
|
72 |
57 71
|
mpbid |
|
73 |
|
nnsub |
|
74 |
22 2 73
|
syl2anc |
|
75 |
72 74
|
mpbid |
|
76 |
75
|
nnzd |
|
77 |
|
evend2 |
|
78 |
76 77
|
syl |
|
79 |
39 78
|
mpbid |
|
80 |
75
|
nngt0d |
|
81 |
75
|
nnred |
|
82 |
|
halfpos2 |
|
83 |
81 82
|
syl |
|
84 |
80 83
|
mpbid |
|
85 |
|
elnnz |
|
86 |
79 84 85
|
sylanbrc |
|
87 |
1 86
|
eqeltrid |
|