| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pythagtriplem15.1 |
|
| 2 |
|
pythagtriplem15.2 |
|
| 3 |
1
|
pythagtriplem12 |
|
| 4 |
2
|
pythagtriplem14 |
|
| 5 |
3 4
|
oveq12d |
|
| 6 |
|
simp3 |
|
| 7 |
|
simp1 |
|
| 8 |
6 7
|
nnaddcld |
|
| 9 |
8
|
nncnd |
|
| 10 |
9
|
3ad2ant1 |
|
| 11 |
|
nnz |
|
| 12 |
11
|
3ad2ant3 |
|
| 13 |
|
nnz |
|
| 14 |
13
|
3ad2ant1 |
|
| 15 |
12 14
|
zsubcld |
|
| 16 |
15
|
zcnd |
|
| 17 |
16
|
3ad2ant1 |
|
| 18 |
|
2cnne0 |
|
| 19 |
|
divsubdir |
|
| 20 |
18 19
|
mp3an3 |
|
| 21 |
10 17 20
|
syl2anc |
|
| 22 |
5 21
|
eqtr4d |
|
| 23 |
|
nncn |
|
| 24 |
23
|
3ad2ant3 |
|
| 25 |
24
|
3ad2ant1 |
|
| 26 |
|
nncn |
|
| 27 |
26
|
3ad2ant1 |
|
| 28 |
27
|
3ad2ant1 |
|
| 29 |
25 28 28
|
pnncand |
|
| 30 |
28
|
2timesd |
|
| 31 |
29 30
|
eqtr4d |
|
| 32 |
31
|
oveq1d |
|
| 33 |
|
2cn |
|
| 34 |
|
2ne0 |
|
| 35 |
|
divcan3 |
|
| 36 |
33 34 35
|
mp3an23 |
|
| 37 |
28 36
|
syl |
|
| 38 |
22 32 37
|
3eqtrrd |
|