| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pythagtriplem15.1 |
|
| 2 |
|
pythagtriplem15.2 |
|
| 3 |
1
|
pythagtriplem12 |
|
| 4 |
2
|
pythagtriplem14 |
|
| 5 |
3 4
|
oveq12d |
|
| 6 |
|
nncn |
|
| 7 |
6
|
3ad2ant3 |
|
| 8 |
7
|
3ad2ant1 |
|
| 9 |
|
nncn |
|
| 10 |
9
|
3ad2ant1 |
|
| 11 |
10
|
3ad2ant1 |
|
| 12 |
8 11
|
addcld |
|
| 13 |
8 11
|
subcld |
|
| 14 |
|
2cnne0 |
|
| 15 |
|
divdir |
|
| 16 |
14 15
|
mp3an3 |
|
| 17 |
12 13 16
|
syl2anc |
|
| 18 |
5 17
|
eqtr4d |
|
| 19 |
8 11 8
|
ppncand |
|
| 20 |
8
|
2timesd |
|
| 21 |
19 20
|
eqtr4d |
|
| 22 |
21
|
oveq1d |
|
| 23 |
|
2cn |
|
| 24 |
|
2ne0 |
|
| 25 |
|
divcan3 |
|
| 26 |
23 24 25
|
mp3an23 |
|
| 27 |
8 26
|
syl |
|
| 28 |
18 22 27
|
3eqtrrd |
|