Step |
Hyp |
Ref |
Expression |
1 |
|
gcdnncl |
|
2 |
1
|
3adant3 |
|
3 |
2
|
3ad2ant1 |
|
4 |
|
nnz |
|
5 |
|
nnz |
|
6 |
|
gcddvds |
|
7 |
4 5 6
|
syl2an |
|
8 |
7
|
3adant3 |
|
9 |
8
|
simpld |
|
10 |
2
|
nnzd |
|
11 |
2
|
nnne0d |
|
12 |
4
|
3ad2ant1 |
|
13 |
|
dvdsval2 |
|
14 |
10 11 12 13
|
syl3anc |
|
15 |
9 14
|
mpbid |
|
16 |
|
nnre |
|
17 |
16
|
3ad2ant1 |
|
18 |
2
|
nnred |
|
19 |
|
nngt0 |
|
20 |
19
|
3ad2ant1 |
|
21 |
2
|
nngt0d |
|
22 |
17 18 20 21
|
divgt0d |
|
23 |
|
elnnz |
|
24 |
15 22 23
|
sylanbrc |
|
25 |
24
|
3ad2ant1 |
|
26 |
8
|
simprd |
|
27 |
5
|
3ad2ant2 |
|
28 |
|
dvdsval2 |
|
29 |
10 11 27 28
|
syl3anc |
|
30 |
26 29
|
mpbid |
|
31 |
|
nnre |
|
32 |
31
|
3ad2ant2 |
|
33 |
|
nngt0 |
|
34 |
33
|
3ad2ant2 |
|
35 |
32 18 34 21
|
divgt0d |
|
36 |
|
elnnz |
|
37 |
30 35 36
|
sylanbrc |
|
38 |
37
|
3ad2ant1 |
|
39 |
|
dvdssq |
|
40 |
10 12 39
|
syl2anc |
|
41 |
|
dvdssq |
|
42 |
10 27 41
|
syl2anc |
|
43 |
40 42
|
anbi12d |
|
44 |
8 43
|
mpbid |
|
45 |
2
|
nnsqcld |
|
46 |
45
|
nnzd |
|
47 |
|
nnsqcl |
|
48 |
47
|
3ad2ant1 |
|
49 |
48
|
nnzd |
|
50 |
|
nnsqcl |
|
51 |
50
|
3ad2ant2 |
|
52 |
51
|
nnzd |
|
53 |
|
dvds2add |
|
54 |
46 49 52 53
|
syl3anc |
|
55 |
44 54
|
mpd |
|
56 |
55
|
adantr |
|
57 |
|
simpr |
|
58 |
56 57
|
breqtrd |
|
59 |
|
nnz |
|
60 |
59
|
3ad2ant3 |
|
61 |
|
dvdssq |
|
62 |
10 60 61
|
syl2anc |
|
63 |
62
|
adantr |
|
64 |
58 63
|
mpbird |
|
65 |
|
dvdsval2 |
|
66 |
10 11 60 65
|
syl3anc |
|
67 |
66
|
adantr |
|
68 |
64 67
|
mpbid |
|
69 |
|
nnre |
|
70 |
69
|
3ad2ant3 |
|
71 |
|
nngt0 |
|
72 |
71
|
3ad2ant3 |
|
73 |
70 18 72 21
|
divgt0d |
|
74 |
73
|
adantr |
|
75 |
|
elnnz |
|
76 |
68 74 75
|
sylanbrc |
|
77 |
76
|
3adant3 |
|
78 |
48
|
nncnd |
|
79 |
51
|
nncnd |
|
80 |
45
|
nncnd |
|
81 |
45
|
nnne0d |
|
82 |
78 79 80 81
|
divdird |
|
83 |
82
|
3ad2ant1 |
|
84 |
|
nncn |
|
85 |
84
|
3ad2ant3 |
|
86 |
2
|
nncnd |
|
87 |
85 86 11
|
sqdivd |
|
88 |
87
|
3ad2ant1 |
|
89 |
|
oveq1 |
|
90 |
89
|
3ad2ant2 |
|
91 |
88 90
|
eqtr4d |
|
92 |
|
nncn |
|
93 |
92
|
3ad2ant1 |
|
94 |
93 86 11
|
sqdivd |
|
95 |
|
nncn |
|
96 |
95
|
3ad2ant2 |
|
97 |
96 86 11
|
sqdivd |
|
98 |
94 97
|
oveq12d |
|
99 |
98
|
3ad2ant1 |
|
100 |
83 91 99
|
3eqtr4rd |
|
101 |
|
gcddiv |
|
102 |
12 27 2 8 101
|
syl31anc |
|
103 |
86 11
|
dividd |
|
104 |
102 103
|
eqtr3d |
|
105 |
104
|
3ad2ant1 |
|
106 |
|
simp3 |
|
107 |
|
pythagtriplem18 |
|
108 |
25 38 77 100 105 106 107
|
syl312anc |
|
109 |
93 86 11
|
divcan2d |
|
110 |
109
|
eqcomd |
|
111 |
96 86 11
|
divcan2d |
|
112 |
111
|
eqcomd |
|
113 |
85 86 11
|
divcan2d |
|
114 |
113
|
eqcomd |
|
115 |
110 112 114
|
3jca |
|
116 |
115
|
3ad2ant1 |
|
117 |
|
oveq2 |
|
118 |
117
|
eqeq2d |
|
119 |
118
|
3ad2ant1 |
|
120 |
|
oveq2 |
|
121 |
120
|
eqeq2d |
|
122 |
121
|
3ad2ant2 |
|
123 |
|
oveq2 |
|
124 |
123
|
eqeq2d |
|
125 |
124
|
3ad2ant3 |
|
126 |
119 122 125
|
3anbi123d |
|
127 |
116 126
|
syl5ibcom |
|
128 |
127
|
reximdv |
|
129 |
128
|
reximdv |
|
130 |
108 129
|
mpd |
|
131 |
|
oveq1 |
|
132 |
131
|
eqeq2d |
|
133 |
|
oveq1 |
|
134 |
133
|
eqeq2d |
|
135 |
|
oveq1 |
|
136 |
135
|
eqeq2d |
|
137 |
132 134 136
|
3anbi123d |
|
138 |
137
|
2rexbidv |
|
139 |
138
|
rspcev |
|
140 |
3 130 139
|
syl2anc |
|
141 |
|
rexcom |
|
142 |
|
rexcom |
|
143 |
142
|
rexbii |
|
144 |
141 143
|
bitri |
|
145 |
140 144
|
sylib |
|