Metamath Proof Explorer


Theorem pythagtriplem2

Description: Lemma for pythagtrip . Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem2 A B n m k A B = k m 2 n 2 k 2 m n C = k m 2 + n 2 A 2 + B 2 = C 2

Proof

Step Hyp Ref Expression
1 ovex k m 2 n 2 V
2 ovex k 2 m n V
3 preq12bg A B k m 2 n 2 V k 2 m n V A B = k m 2 n 2 k 2 m n A = k m 2 n 2 B = k 2 m n A = k 2 m n B = k m 2 n 2
4 1 2 3 mpanr12 A B A B = k m 2 n 2 k 2 m n A = k m 2 n 2 B = k 2 m n A = k 2 m n B = k m 2 n 2
5 4 anbi1d A B A B = k m 2 n 2 k 2 m n C = k m 2 + n 2 A = k m 2 n 2 B = k 2 m n A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
6 andir A = k m 2 n 2 B = k 2 m n A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
7 df-3an A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2
8 df-3an A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
9 7 8 orbi12i A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
10 6 9 bitr4i A = k m 2 n 2 B = k 2 m n A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
11 5 10 bitrdi A B A B = k m 2 n 2 k 2 m n C = k m 2 + n 2 A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
12 11 rexbidv A B k A B = k m 2 n 2 k 2 m n C = k m 2 + n 2 k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
13 12 2rexbidv A B n m k A B = k m 2 n 2 k 2 m n C = k m 2 + n 2 n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
14 r19.43 k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
15 14 2rexbii n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
16 r19.43 m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 m k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
17 16 rexbii n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 m k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
18 r19.43 n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 m k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 n m k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
19 15 17 18 3bitri n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 n m k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
20 13 19 bitrdi A B n m k A B = k m 2 n 2 k 2 m n C = k m 2 + n 2 n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 n m k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2
21 pythagtriplem1 n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A 2 + B 2 = C 2
22 21 a1i A B n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 A 2 + B 2 = C 2
23 3ancoma A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 B = k m 2 n 2 A = k 2 m n C = k m 2 + n 2
24 23 rexbii k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 k B = k m 2 n 2 A = k 2 m n C = k m 2 + n 2
25 24 2rexbii n m k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 n m k B = k m 2 n 2 A = k 2 m n C = k m 2 + n 2
26 pythagtriplem1 n m k B = k m 2 n 2 A = k 2 m n C = k m 2 + n 2 B 2 + A 2 = C 2
27 25 26 sylbi n m k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 B 2 + A 2 = C 2
28 nncn A A
29 28 sqcld A A 2
30 nncn B B
31 30 sqcld B B 2
32 addcom A 2 B 2 A 2 + B 2 = B 2 + A 2
33 29 31 32 syl2an A B A 2 + B 2 = B 2 + A 2
34 33 eqeq1d A B A 2 + B 2 = C 2 B 2 + A 2 = C 2
35 27 34 syl5ibr A B n m k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 A 2 + B 2 = C 2
36 22 35 jaod A B n m k A = k m 2 n 2 B = k 2 m n C = k m 2 + n 2 n m k A = k 2 m n B = k m 2 n 2 C = k m 2 + n 2 A 2 + B 2 = C 2
37 20 36 sylbid A B n m k A B = k m 2 n 2 k 2 m n C = k m 2 + n 2 A 2 + B 2 = C 2