Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
adantl |
|
3 |
|
nnz |
|
4 |
|
zsqcl |
|
5 |
3 4
|
syl |
|
6 |
5
|
3ad2ant2 |
|
7 |
|
nnz |
|
8 |
|
zsqcl |
|
9 |
7 8
|
syl |
|
10 |
9
|
3ad2ant1 |
|
11 |
|
gcdadd |
|
12 |
6 10 11
|
syl2anc |
|
13 |
6 10
|
gcdcomd |
|
14 |
12 13
|
eqtr3d |
|
15 |
14
|
adantr |
|
16 |
2 15
|
eqtr3d |
|
17 |
|
simpl2 |
|
18 |
|
simpl3 |
|
19 |
|
sqgcd |
|
20 |
17 18 19
|
syl2anc |
|
21 |
|
simpl1 |
|
22 |
|
sqgcd |
|
23 |
21 17 22
|
syl2anc |
|
24 |
16 20 23
|
3eqtr4d |
|
25 |
24
|
3adant3 |
|
26 |
|
simp3l |
|
27 |
26
|
oveq1d |
|
28 |
25 27
|
eqtrd |
|
29 |
3
|
3ad2ant2 |
|
30 |
|
nnz |
|
31 |
30
|
3ad2ant3 |
|
32 |
29 31
|
gcdcld |
|
33 |
32
|
nn0red |
|
34 |
33
|
3ad2ant1 |
|
35 |
32
|
nn0ge0d |
|
36 |
35
|
3ad2ant1 |
|
37 |
|
1re |
|
38 |
|
0le1 |
|
39 |
|
sq11 |
|
40 |
37 38 39
|
mpanr12 |
|
41 |
34 36 40
|
syl2anc |
|
42 |
28 41
|
mpbid |
|