Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|
2 |
1
|
3ad2ant3 |
|
3 |
|
nnz |
|
4 |
3
|
3ad2ant2 |
|
5 |
2 4
|
zsubcld |
|
6 |
5
|
3ad2ant1 |
|
7 |
|
pythagtriplem10 |
|
8 |
7
|
3adant3 |
|
9 |
|
elnnz |
|
10 |
6 8 9
|
sylanbrc |
|
11 |
10
|
nnnn0d |
|
12 |
|
simp3 |
|
13 |
|
simp2 |
|
14 |
12 13
|
nnaddcld |
|
15 |
14
|
nnzd |
|
16 |
15
|
3ad2ant1 |
|
17 |
|
nnnn0 |
|
18 |
17
|
3ad2ant1 |
|
19 |
18
|
3ad2ant1 |
|
20 |
11 16 19
|
3jca |
|
21 |
|
pythagtriplem4 |
|
22 |
21
|
oveq1d |
|
23 |
|
nnz |
|
24 |
23
|
3ad2ant1 |
|
25 |
24
|
3ad2ant1 |
|
26 |
|
1gcd |
|
27 |
25 26
|
syl |
|
28 |
22 27
|
eqtrd |
|
29 |
20 28
|
jca |
|
30 |
|
oveq1 |
|
31 |
30
|
3ad2ant2 |
|
32 |
24
|
zcnd |
|
33 |
32
|
sqcld |
|
34 |
|
nncn |
|
35 |
34
|
3ad2ant2 |
|
36 |
35
|
sqcld |
|
37 |
33 36
|
pncand |
|
38 |
37
|
3ad2ant1 |
|
39 |
|
nncn |
|
40 |
39
|
3ad2ant3 |
|
41 |
|
subsq |
|
42 |
40 35 41
|
syl2anc |
|
43 |
14
|
nncnd |
|
44 |
5
|
zcnd |
|
45 |
43 44
|
mulcomd |
|
46 |
42 45
|
eqtrd |
|
47 |
46
|
3ad2ant1 |
|
48 |
31 38 47
|
3eqtr3d |
|
49 |
|
coprimeprodsq |
|
50 |
29 48 49
|
sylc |
|
51 |
50
|
fveq2d |
|
52 |
6 25
|
gcdcld |
|
53 |
52
|
nn0red |
|
54 |
52
|
nn0ge0d |
|
55 |
53 54
|
sqrtsqd |
|
56 |
51 55
|
eqtrd |
|