Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|
2 |
1
|
nnzd |
|
3 |
|
simp2 |
|
4 |
3
|
nnzd |
|
5 |
2 4
|
zsubcld |
|
6 |
5
|
3ad2ant1 |
|
7 |
1 3
|
nnaddcld |
|
8 |
7
|
nnnn0d |
|
9 |
8
|
3ad2ant1 |
|
10 |
|
nnnn0 |
|
11 |
10
|
3ad2ant1 |
|
12 |
11
|
3ad2ant1 |
|
13 |
6 9 12
|
3jca |
|
14 |
|
pythagtriplem4 |
|
15 |
14
|
oveq1d |
|
16 |
|
nnz |
|
17 |
16
|
3ad2ant1 |
|
18 |
17
|
3ad2ant1 |
|
19 |
|
1gcd |
|
20 |
18 19
|
syl |
|
21 |
15 20
|
eqtrd |
|
22 |
13 21
|
jca |
|
23 |
|
oveq1 |
|
24 |
23
|
3ad2ant2 |
|
25 |
|
nncn |
|
26 |
25
|
3ad2ant1 |
|
27 |
26
|
sqcld |
|
28 |
3
|
nncnd |
|
29 |
28
|
sqcld |
|
30 |
27 29
|
pncand |
|
31 |
30
|
3ad2ant1 |
|
32 |
1
|
nncnd |
|
33 |
|
subsq |
|
34 |
32 28 33
|
syl2anc |
|
35 |
7
|
nncnd |
|
36 |
5
|
zcnd |
|
37 |
35 36
|
mulcomd |
|
38 |
34 37
|
eqtrd |
|
39 |
38
|
3ad2ant1 |
|
40 |
24 31 39
|
3eqtr3d |
|
41 |
|
coprimeprodsq2 |
|
42 |
22 40 41
|
sylc |
|
43 |
42
|
fveq2d |
|
44 |
7
|
nnzd |
|
45 |
44
|
3ad2ant1 |
|
46 |
45 18
|
gcdcld |
|
47 |
46
|
nn0red |
|
48 |
46
|
nn0ge0d |
|
49 |
47 48
|
sqrtsqd |
|
50 |
43 49
|
eqtrd |
|