Metamath Proof Explorer


Theorem pythagtriplem8

Description: Lemma for pythagtrip . Show that ( sqrt( C - B ) ) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem8 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B

Proof

Step Hyp Ref Expression
1 pythagtriplem6 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B = C B gcd A
2 nnz C C
3 nnz B B
4 zsubcl C B C B
5 2 3 4 syl2anr B C C B
6 5 3adant1 A B C C B
7 nnz A A
8 7 3ad2ant1 A B C A
9 nnne0 A A 0
10 9 neneqd A ¬ A = 0
11 10 intnand A ¬ C B = 0 A = 0
12 11 3ad2ant1 A B C ¬ C B = 0 A = 0
13 gcdn0cl C B A ¬ C B = 0 A = 0 C B gcd A
14 6 8 12 13 syl21anc A B C C B gcd A
15 14 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B gcd A
16 1 15 eqeltrd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B