Metamath Proof Explorer


Theorem pythagtriplem9

Description: Lemma for pythagtrip . Show that ( sqrt( C + B ) ) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem9 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B

Proof

Step Hyp Ref Expression
1 pythagtriplem7 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B = C + B gcd A
2 nnz C C
3 nnz B B
4 zaddcl C B C + B
5 2 3 4 syl2anr B C C + B
6 5 3adant1 A B C C + B
7 6 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B
8 nnz A A
9 8 3ad2ant1 A B C A
10 9 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A A
11 nnne0 A A 0
12 11 neneqd A ¬ A = 0
13 12 intnand A ¬ C + B = 0 A = 0
14 13 3ad2ant1 A B C ¬ C + B = 0 A = 0
15 14 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A ¬ C + B = 0 A = 0
16 gcdn0cl C + B A ¬ C + B = 0 A = 0 C + B gcd A
17 7 10 15 16 syl21anc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B gcd A
18 1 17 eqeltrd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B