Metamath Proof Explorer


Theorem q1pcl

Description: Closure of the quotient by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses q1pcl.q Q = quot 1p R
q1pcl.p P = Poly 1 R
q1pcl.b B = Base P
q1pcl.c C = Unic 1p R
Assertion q1pcl R Ring F B G C F Q G B

Proof

Step Hyp Ref Expression
1 q1pcl.q Q = quot 1p R
2 q1pcl.p P = Poly 1 R
3 q1pcl.b B = Base P
4 q1pcl.c C = Unic 1p R
5 eqid F Q G = F Q G
6 eqid deg 1 R = deg 1 R
7 eqid - P = - P
8 eqid P = P
9 1 2 3 6 7 8 4 q1peqb R Ring F B G C F Q G B deg 1 R F - P F Q G P G < deg 1 R G F Q G = F Q G
10 5 9 mpbiri R Ring F B G C F Q G B deg 1 R F - P F Q G P G < deg 1 R G
11 10 simpld R Ring F B G C F Q G B