Metamath Proof Explorer


Theorem q1pdir

Description: Distribution of univariate polynomial quotient over addition. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1padd1.p P = Poly 1 R
r1padd1.u U = Base P
r1padd1.n N = Unic 1p R
q1pdir.d × ˙ = quot 1p R
q1pdir.r φ R Ring
q1pdir.a φ A U
q1pdir.c φ C N
q1pdir.b φ B U
q1pdir.1 + ˙ = + P
Assertion q1pdir φ A + ˙ B × ˙ C = A × ˙ C + ˙ B × ˙ C

Proof

Step Hyp Ref Expression
1 r1padd1.p P = Poly 1 R
2 r1padd1.u U = Base P
3 r1padd1.n N = Unic 1p R
4 q1pdir.d × ˙ = quot 1p R
5 q1pdir.r φ R Ring
6 q1pdir.a φ A U
7 q1pdir.c φ C N
8 q1pdir.b φ B U
9 q1pdir.1 + ˙ = + P
10 1 ply1ring R Ring P Ring
11 5 10 syl φ P Ring
12 11 ringgrpd φ P Grp
13 2 9 12 6 8 grpcld φ A + ˙ B U
14 4 1 2 3 q1pcl R Ring A U C N A × ˙ C U
15 5 6 7 14 syl3anc φ A × ˙ C U
16 4 1 2 3 q1pcl R Ring B U C N B × ˙ C U
17 5 8 7 16 syl3anc φ B × ˙ C U
18 2 9 12 15 17 grpcld φ A × ˙ C + ˙ B × ˙ C U
19 1 2 3 uc1pcl C N C U
20 7 19 syl φ C U
21 eqid P = P
22 2 9 21 ringdir P Ring A × ˙ C U B × ˙ C U C U A × ˙ C + ˙ B × ˙ C P C = A × ˙ C P C + ˙ B × ˙ C P C
23 11 15 17 20 22 syl13anc φ A × ˙ C + ˙ B × ˙ C P C = A × ˙ C P C + ˙ B × ˙ C P C
24 23 oveq2d φ A + ˙ B - P A × ˙ C + ˙ B × ˙ C P C = A + ˙ B - P A × ˙ C P C + ˙ B × ˙ C P C
25 11 ringabld φ P Abel
26 2 21 11 15 20 ringcld φ A × ˙ C P C U
27 2 21 11 17 20 ringcld φ B × ˙ C P C U
28 eqid - P = - P
29 2 9 28 ablsub4 P Abel A U B U A × ˙ C P C U B × ˙ C P C U A + ˙ B - P A × ˙ C P C + ˙ B × ˙ C P C = A - P A × ˙ C P C + ˙ B - P B × ˙ C P C
30 25 6 8 26 27 29 syl122anc φ A + ˙ B - P A × ˙ C P C + ˙ B × ˙ C P C = A - P A × ˙ C P C + ˙ B - P B × ˙ C P C
31 24 30 eqtrd φ A + ˙ B - P A × ˙ C + ˙ B × ˙ C P C = A - P A × ˙ C P C + ˙ B - P B × ˙ C P C
32 31 fveq2d φ deg 1 R A + ˙ B - P A × ˙ C + ˙ B × ˙ C P C = deg 1 R A - P A × ˙ C P C + ˙ B - P B × ˙ C P C
33 eqid deg 1 R = deg 1 R
34 eqid rem 1p R = rem 1p R
35 34 1 2 4 21 28 r1pval A U C U A rem 1p R C = A - P A × ˙ C P C
36 6 20 35 syl2anc φ A rem 1p R C = A - P A × ˙ C P C
37 34 1 2 3 r1pcl R Ring A U C N A rem 1p R C U
38 5 6 7 37 syl3anc φ A rem 1p R C U
39 36 38 eqeltrrd φ A - P A × ˙ C P C U
40 34 1 2 4 21 28 r1pval B U C U B rem 1p R C = B - P B × ˙ C P C
41 8 20 40 syl2anc φ B rem 1p R C = B - P B × ˙ C P C
42 34 1 2 3 r1pcl R Ring B U C N B rem 1p R C U
43 5 8 7 42 syl3anc φ B rem 1p R C U
44 41 43 eqeltrrd φ B - P B × ˙ C P C U
45 33 1 2 deg1xrcl C U deg 1 R C *
46 20 45 syl φ deg 1 R C *
47 36 fveq2d φ deg 1 R A rem 1p R C = deg 1 R A - P A × ˙ C P C
48 34 1 2 3 33 r1pdeglt R Ring A U C N deg 1 R A rem 1p R C < deg 1 R C
49 5 6 7 48 syl3anc φ deg 1 R A rem 1p R C < deg 1 R C
50 47 49 eqbrtrrd φ deg 1 R A - P A × ˙ C P C < deg 1 R C
51 41 fveq2d φ deg 1 R B rem 1p R C = deg 1 R B - P B × ˙ C P C
52 34 1 2 3 33 r1pdeglt R Ring B U C N deg 1 R B rem 1p R C < deg 1 R C
53 5 8 7 52 syl3anc φ deg 1 R B rem 1p R C < deg 1 R C
54 51 53 eqbrtrrd φ deg 1 R B - P B × ˙ C P C < deg 1 R C
55 1 33 5 2 9 39 44 46 50 54 deg1addlt φ deg 1 R A - P A × ˙ C P C + ˙ B - P B × ˙ C P C < deg 1 R C
56 32 55 eqbrtrd φ deg 1 R A + ˙ B - P A × ˙ C + ˙ B × ˙ C P C < deg 1 R C
57 4 1 2 33 28 21 3 q1peqb R Ring A + ˙ B U C N A × ˙ C + ˙ B × ˙ C U deg 1 R A + ˙ B - P A × ˙ C + ˙ B × ˙ C P C < deg 1 R C A + ˙ B × ˙ C = A × ˙ C + ˙ B × ˙ C
58 57 biimpa R Ring A + ˙ B U C N A × ˙ C + ˙ B × ˙ C U deg 1 R A + ˙ B - P A × ˙ C + ˙ B × ˙ C P C < deg 1 R C A + ˙ B × ˙ C = A × ˙ C + ˙ B × ˙ C
59 5 13 7 18 56 58 syl32anc φ A + ˙ B × ˙ C = A × ˙ C + ˙ B × ˙ C