Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
|
2 |
|
r1padd1.u |
|
3 |
|
r1padd1.n |
|
4 |
|
q1pdir.d |
|
5 |
|
q1pdir.r |
|
6 |
|
q1pdir.a |
|
7 |
|
q1pdir.c |
|
8 |
|
q1pdir.b |
|
9 |
|
q1pdir.1 |
|
10 |
1
|
ply1ring |
|
11 |
5 10
|
syl |
|
12 |
11
|
ringgrpd |
|
13 |
2 9 12 6 8
|
grpcld |
|
14 |
4 1 2 3
|
q1pcl |
|
15 |
5 6 7 14
|
syl3anc |
|
16 |
4 1 2 3
|
q1pcl |
|
17 |
5 8 7 16
|
syl3anc |
|
18 |
2 9 12 15 17
|
grpcld |
|
19 |
1 2 3
|
uc1pcl |
|
20 |
7 19
|
syl |
|
21 |
|
eqid |
|
22 |
2 9 21
|
ringdir |
|
23 |
11 15 17 20 22
|
syl13anc |
|
24 |
23
|
oveq2d |
|
25 |
11
|
ringabld |
|
26 |
2 21 11 15 20
|
ringcld |
|
27 |
2 21 11 17 20
|
ringcld |
|
28 |
|
eqid |
|
29 |
2 9 28
|
ablsub4 |
|
30 |
25 6 8 26 27 29
|
syl122anc |
|
31 |
24 30
|
eqtrd |
|
32 |
31
|
fveq2d |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
34 1 2 4 21 28
|
r1pval |
|
36 |
6 20 35
|
syl2anc |
|
37 |
34 1 2 3
|
r1pcl |
|
38 |
5 6 7 37
|
syl3anc |
|
39 |
36 38
|
eqeltrrd |
|
40 |
34 1 2 4 21 28
|
r1pval |
|
41 |
8 20 40
|
syl2anc |
|
42 |
34 1 2 3
|
r1pcl |
|
43 |
5 8 7 42
|
syl3anc |
|
44 |
41 43
|
eqeltrrd |
|
45 |
33 1 2
|
deg1xrcl |
|
46 |
20 45
|
syl |
|
47 |
36
|
fveq2d |
|
48 |
34 1 2 3 33
|
r1pdeglt |
|
49 |
5 6 7 48
|
syl3anc |
|
50 |
47 49
|
eqbrtrrd |
|
51 |
41
|
fveq2d |
|
52 |
34 1 2 3 33
|
r1pdeglt |
|
53 |
5 8 7 52
|
syl3anc |
|
54 |
51 53
|
eqbrtrrd |
|
55 |
1 33 5 2 9 39 44 46 50 54
|
deg1addlt |
|
56 |
32 55
|
eqbrtrd |
|
57 |
4 1 2 33 28 21 3
|
q1peqb |
|
58 |
57
|
biimpa |
|
59 |
5 13 7 18 56 58
|
syl32anc |
|