Metamath Proof Explorer


Theorem q1pvsca

Description: Scalar multiplication property of the polynomial division. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1padd1.p P = Poly 1 R
r1padd1.u U = Base P
r1padd1.n N = Unic 1p R
q1pdir.d × ˙ = quot 1p R
q1pdir.r φ R Ring
q1pdir.a φ A U
q1pdir.c φ C N
q1pvsca.1 × ˙ = P
q1pvsca.k K = Base R
q1pvsca.8 φ B K
Assertion q1pvsca φ B × ˙ A × ˙ C = B × ˙ A × ˙ C

Proof

Step Hyp Ref Expression
1 r1padd1.p P = Poly 1 R
2 r1padd1.u U = Base P
3 r1padd1.n N = Unic 1p R
4 q1pdir.d × ˙ = quot 1p R
5 q1pdir.r φ R Ring
6 q1pdir.a φ A U
7 q1pdir.c φ C N
8 q1pvsca.1 × ˙ = P
9 q1pvsca.k K = Base R
10 q1pvsca.8 φ B K
11 eqid Scalar P = Scalar P
12 eqid Base Scalar P = Base Scalar P
13 1 ply1lmod R Ring P LMod
14 5 13 syl φ P LMod
15 1 ply1sca R Ring R = Scalar P
16 5 15 syl φ R = Scalar P
17 16 fveq2d φ Base R = Base Scalar P
18 9 17 eqtrid φ K = Base Scalar P
19 10 18 eleqtrd φ B Base Scalar P
20 2 11 8 12 14 19 6 lmodvscld φ B × ˙ A U
21 4 1 2 3 q1pcl R Ring A U C N A × ˙ C U
22 5 6 7 21 syl3anc φ A × ˙ C U
23 2 11 8 12 14 19 22 lmodvscld φ B × ˙ A × ˙ C U
24 14 lmodgrpd φ P Grp
25 eqid P = P
26 1 ply1ring R Ring P Ring
27 5 26 syl φ P Ring
28 1 2 3 uc1pcl C N C U
29 7 28 syl φ C U
30 2 25 27 23 29 ringcld φ B × ˙ A × ˙ C P C U
31 eqid - P = - P
32 2 31 grpsubcl P Grp B × ˙ A U B × ˙ A × ˙ C P C U B × ˙ A - P B × ˙ A × ˙ C P C U
33 24 20 30 32 syl3anc φ B × ˙ A - P B × ˙ A × ˙ C P C U
34 eqid deg 1 R = deg 1 R
35 34 1 2 deg1xrcl B × ˙ A - P B × ˙ A × ˙ C P C U deg 1 R B × ˙ A - P B × ˙ A × ˙ C P C *
36 33 35 syl φ deg 1 R B × ˙ A - P B × ˙ A × ˙ C P C *
37 eqid rem 1p R = rem 1p R
38 37 1 2 4 25 31 r1pval A U C U A rem 1p R C = A - P A × ˙ C P C
39 6 29 38 syl2anc φ A rem 1p R C = A - P A × ˙ C P C
40 2 25 27 22 29 ringcld φ A × ˙ C P C U
41 2 31 grpsubcl P Grp A U A × ˙ C P C U A - P A × ˙ C P C U
42 24 6 40 41 syl3anc φ A - P A × ˙ C P C U
43 39 42 eqeltrd φ A rem 1p R C U
44 34 1 2 deg1xrcl A rem 1p R C U deg 1 R A rem 1p R C *
45 43 44 syl φ deg 1 R A rem 1p R C *
46 34 1 2 deg1xrcl C U deg 1 R C *
47 29 46 syl φ deg 1 R C *
48 1 34 5 2 9 8 10 42 deg1vscale φ deg 1 R B × ˙ A - P A × ˙ C P C deg 1 R A - P A × ˙ C P C
49 1 25 2 9 8 ply1ass23l R Ring B K A × ˙ C U C U B × ˙ A × ˙ C P C = B × ˙ A × ˙ C P C
50 5 10 22 29 49 syl13anc φ B × ˙ A × ˙ C P C = B × ˙ A × ˙ C P C
51 50 oveq2d φ B × ˙ A - P B × ˙ A × ˙ C P C = B × ˙ A - P B × ˙ A × ˙ C P C
52 2 8 11 12 31 14 19 6 40 lmodsubdi φ B × ˙ A - P A × ˙ C P C = B × ˙ A - P B × ˙ A × ˙ C P C
53 51 52 eqtr4d φ B × ˙ A - P B × ˙ A × ˙ C P C = B × ˙ A - P A × ˙ C P C
54 53 fveq2d φ deg 1 R B × ˙ A - P B × ˙ A × ˙ C P C = deg 1 R B × ˙ A - P A × ˙ C P C
55 39 fveq2d φ deg 1 R A rem 1p R C = deg 1 R A - P A × ˙ C P C
56 48 54 55 3brtr4d φ deg 1 R B × ˙ A - P B × ˙ A × ˙ C P C deg 1 R A rem 1p R C
57 37 1 2 3 34 r1pdeglt R Ring A U C N deg 1 R A rem 1p R C < deg 1 R C
58 5 6 7 57 syl3anc φ deg 1 R A rem 1p R C < deg 1 R C
59 36 45 47 56 58 xrlelttrd φ deg 1 R B × ˙ A - P B × ˙ A × ˙ C P C < deg 1 R C
60 4 1 2 34 31 25 3 q1peqb R Ring B × ˙ A U C N B × ˙ A × ˙ C U deg 1 R B × ˙ A - P B × ˙ A × ˙ C P C < deg 1 R C B × ˙ A × ˙ C = B × ˙ A × ˙ C
61 60 biimpa R Ring B × ˙ A U C N B × ˙ A × ˙ C U deg 1 R B × ˙ A - P B × ˙ A × ˙ C P C < deg 1 R C B × ˙ A × ˙ C = B × ˙ A × ˙ C
62 5 20 7 23 59 61 syl32anc φ B × ˙ A × ˙ C = B × ˙ A × ˙ C