| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elq |
|
| 2 |
|
elq |
|
| 3 |
|
nnz |
|
| 4 |
|
zmulcl |
|
| 5 |
3 4
|
sylan2 |
|
| 6 |
5
|
ad2ant2rl |
|
| 7 |
|
simpl |
|
| 8 |
|
nnz |
|
| 9 |
8
|
adantl |
|
| 10 |
|
zmulcl |
|
| 11 |
7 9 10
|
syl2anr |
|
| 12 |
6 11
|
zaddcld |
|
| 13 |
12
|
adantr |
|
| 14 |
|
nnmulcl |
|
| 15 |
14
|
ad2ant2l |
|
| 16 |
15
|
adantr |
|
| 17 |
|
oveq12 |
|
| 18 |
|
zcn |
|
| 19 |
|
zcn |
|
| 20 |
18 19
|
anim12i |
|
| 21 |
|
nncn |
|
| 22 |
|
nnne0 |
|
| 23 |
21 22
|
jca |
|
| 24 |
|
nncn |
|
| 25 |
|
nnne0 |
|
| 26 |
24 25
|
jca |
|
| 27 |
23 26
|
anim12i |
|
| 28 |
|
divadddiv |
|
| 29 |
20 27 28
|
syl2an |
|
| 30 |
29
|
an4s |
|
| 31 |
17 30
|
sylan9eqr |
|
| 32 |
|
rspceov |
|
| 33 |
|
elq |
|
| 34 |
32 33
|
sylibr |
|
| 35 |
13 16 31 34
|
syl3anc |
|
| 36 |
35
|
an4s |
|
| 37 |
36
|
exp43 |
|
| 38 |
37
|
rexlimivv |
|
| 39 |
38
|
rexlimdvv |
|
| 40 |
39
|
imp |
|
| 41 |
1 2 40
|
syl2anb |
|