Step |
Hyp |
Ref |
Expression |
1 |
|
elq |
|
2 |
|
elq |
|
3 |
|
nnz |
|
4 |
|
zmulcl |
|
5 |
3 4
|
sylan2 |
|
6 |
5
|
ad2ant2rl |
|
7 |
|
simpl |
|
8 |
|
nnz |
|
9 |
8
|
adantl |
|
10 |
|
zmulcl |
|
11 |
7 9 10
|
syl2anr |
|
12 |
6 11
|
zaddcld |
|
13 |
12
|
adantr |
|
14 |
|
nnmulcl |
|
15 |
14
|
ad2ant2l |
|
16 |
15
|
adantr |
|
17 |
|
oveq12 |
|
18 |
|
zcn |
|
19 |
|
zcn |
|
20 |
18 19
|
anim12i |
|
21 |
|
nncn |
|
22 |
|
nnne0 |
|
23 |
21 22
|
jca |
|
24 |
|
nncn |
|
25 |
|
nnne0 |
|
26 |
24 25
|
jca |
|
27 |
23 26
|
anim12i |
|
28 |
|
divadddiv |
|
29 |
20 27 28
|
syl2an |
|
30 |
29
|
an4s |
|
31 |
17 30
|
sylan9eqr |
|
32 |
|
rspceov |
|
33 |
|
elq |
|
34 |
32 33
|
sylibr |
|
35 |
13 16 31 34
|
syl3anc |
|
36 |
35
|
an4s |
|
37 |
36
|
exp43 |
|
38 |
37
|
rexlimivv |
|
39 |
38
|
rexlimdvv |
|
40 |
39
|
imp |
|
41 |
1 2 40
|
syl2anb |
|