Step |
Hyp |
Ref |
Expression |
1 |
|
posdif |
|
2 |
|
resubcl |
|
3 |
|
nnrecl |
|
4 |
2 3
|
sylan |
|
5 |
4
|
ex |
|
6 |
5
|
ancoms |
|
7 |
1 6
|
sylbid |
|
8 |
|
nnre |
|
9 |
8
|
adantl |
|
10 |
|
simplr |
|
11 |
9 10
|
remulcld |
|
12 |
|
peano2rem |
|
13 |
11 12
|
syl |
|
14 |
|
zbtwnre |
|
15 |
|
reurex |
|
16 |
13 14 15
|
3syl |
|
17 |
|
znq |
|
18 |
17
|
ancoms |
|
19 |
18
|
adantl |
|
20 |
|
an32 |
|
21 |
8
|
ad2antrl |
|
22 |
|
simpll |
|
23 |
21 22
|
remulcld |
|
24 |
13
|
adantrr |
|
25 |
|
zre |
|
26 |
25
|
ad2antll |
|
27 |
|
ltletr |
|
28 |
23 24 26 27
|
syl3anc |
|
29 |
21
|
recnd |
|
30 |
|
simplr |
|
31 |
30
|
recnd |
|
32 |
22
|
recnd |
|
33 |
29 31 32
|
subdid |
|
34 |
33
|
breq2d |
|
35 |
|
1red |
|
36 |
30 22
|
resubcld |
|
37 |
|
nngt0 |
|
38 |
37
|
ad2antrl |
|
39 |
|
ltdivmul |
|
40 |
35 36 21 38 39
|
syl112anc |
|
41 |
11
|
adantrr |
|
42 |
|
ltsub13 |
|
43 |
23 41 35 42
|
syl3anc |
|
44 |
34 40 43
|
3bitr4rd |
|
45 |
44
|
anbi1d |
|
46 |
45
|
biancomd |
|
47 |
|
ltmuldiv2 |
|
48 |
22 26 21 38 47
|
syl112anc |
|
49 |
28 46 48
|
3imtr3d |
|
50 |
41
|
recnd |
|
51 |
|
ax-1cn |
|
52 |
|
npcan |
|
53 |
50 51 52
|
sylancl |
|
54 |
53
|
breq2d |
|
55 |
|
ltdivmul |
|
56 |
26 30 21 38 55
|
syl112anc |
|
57 |
54 56
|
bitr4d |
|
58 |
57
|
biimpd |
|
59 |
49 58
|
anim12d |
|
60 |
20 59
|
syl5bi |
|
61 |
|
breq2 |
|
62 |
|
breq1 |
|
63 |
61 62
|
anbi12d |
|
64 |
63
|
rspcev |
|
65 |
19 60 64
|
syl6an |
|
66 |
65
|
expd |
|
67 |
66
|
expr |
|
68 |
67
|
rexlimdv |
|
69 |
16 68
|
mpd |
|
70 |
69
|
rexlimdva |
|
71 |
7 70
|
syld |
|
72 |
71
|
3impia |
|