Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
|
2 |
|
elxr |
|
3 |
|
qbtwnre |
|
4 |
3
|
3expia |
|
5 |
|
simpl |
|
6 |
|
peano2re |
|
7 |
6
|
adantr |
|
8 |
|
ltp1 |
|
9 |
8
|
adantr |
|
10 |
|
qbtwnre |
|
11 |
5 7 9 10
|
syl3anc |
|
12 |
|
qre |
|
13 |
12
|
ltpnfd |
|
14 |
13
|
adantl |
|
15 |
|
simplr |
|
16 |
14 15
|
breqtrrd |
|
17 |
16
|
a1d |
|
18 |
17
|
anim2d |
|
19 |
18
|
reximdva |
|
20 |
11 19
|
mpd |
|
21 |
20
|
a1d |
|
22 |
|
rexr |
|
23 |
|
breq2 |
|
24 |
23
|
adantl |
|
25 |
|
nltmnf |
|
26 |
25
|
adantr |
|
27 |
26
|
pm2.21d |
|
28 |
24 27
|
sylbid |
|
29 |
22 28
|
sylan |
|
30 |
4 21 29
|
3jaodan |
|
31 |
2 30
|
sylan2b |
|
32 |
|
breq1 |
|
33 |
32
|
adantr |
|
34 |
|
pnfnlt |
|
35 |
34
|
adantl |
|
36 |
35
|
pm2.21d |
|
37 |
33 36
|
sylbid |
|
38 |
|
peano2rem |
|
39 |
38
|
adantl |
|
40 |
|
simpr |
|
41 |
|
ltm1 |
|
42 |
41
|
adantl |
|
43 |
|
qbtwnre |
|
44 |
39 40 42 43
|
syl3anc |
|
45 |
|
simpll |
|
46 |
12
|
adantl |
|
47 |
46
|
mnfltd |
|
48 |
45 47
|
eqbrtrd |
|
49 |
48
|
a1d |
|
50 |
49
|
anim1d |
|
51 |
50
|
reximdva |
|
52 |
44 51
|
mpd |
|
53 |
52
|
a1d |
|
54 |
|
1re |
|
55 |
|
mnflt |
|
56 |
54 55
|
ax-mp |
|
57 |
|
breq1 |
|
58 |
56 57
|
mpbiri |
|
59 |
|
ltpnf |
|
60 |
54 59
|
ax-mp |
|
61 |
|
breq2 |
|
62 |
60 61
|
mpbiri |
|
63 |
|
1z |
|
64 |
|
zq |
|
65 |
63 64
|
ax-mp |
|
66 |
|
breq2 |
|
67 |
|
breq1 |
|
68 |
66 67
|
anbi12d |
|
69 |
68
|
rspcev |
|
70 |
65 69
|
mpan |
|
71 |
58 62 70
|
syl2an |
|
72 |
71
|
a1d |
|
73 |
|
3mix3 |
|
74 |
73 1
|
sylibr |
|
75 |
74 28
|
sylan |
|
76 |
53 72 75
|
3jaodan |
|
77 |
2 76
|
sylan2b |
|
78 |
31 37 77
|
3jaoian |
|
79 |
1 78
|
sylanb |
|
80 |
79
|
3impia |
|