Metamath Proof Explorer


Theorem qcvs

Description: The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)

Ref Expression
Hypothesis qcvs.q Q = ringLMod fld 𝑠
Assertion qcvs Q ℂVec

Proof

Step Hyp Ref Expression
1 qcvs.q Q = ringLMod fld 𝑠
2 qsubdrg SubRing fld fld 𝑠 DivRing
3 drngring fld 𝑠 DivRing fld 𝑠 Ring
4 3 adantl SubRing fld fld 𝑠 DivRing fld 𝑠 Ring
5 2 4 ax-mp fld 𝑠 Ring
6 rlmlmod fld 𝑠 Ring ringLMod fld 𝑠 LMod
7 5 6 ax-mp ringLMod fld 𝑠 LMod
8 2 simpri fld 𝑠 DivRing
9 rlmsca fld 𝑠 DivRing fld 𝑠 = Scalar ringLMod fld 𝑠
10 9 eqcomd fld 𝑠 DivRing Scalar ringLMod fld 𝑠 = fld 𝑠
11 8 10 ax-mp Scalar ringLMod fld 𝑠 = fld 𝑠
12 2 simpli SubRing fld
13 eqid Scalar ringLMod fld 𝑠 = Scalar ringLMod fld 𝑠
14 13 isclmi ringLMod fld 𝑠 LMod Scalar ringLMod fld 𝑠 = fld 𝑠 SubRing fld ringLMod fld 𝑠 CMod
15 7 11 12 14 mp3an ringLMod fld 𝑠 CMod
16 rlmlvec fld 𝑠 DivRing ringLMod fld 𝑠 LVec
17 8 16 ax-mp ringLMod fld 𝑠 LVec
18 15 17 elini ringLMod fld 𝑠 CMod LVec
19 df-cvs ℂVec = CMod LVec
20 18 1 19 3eltr4i Q ℂVec