Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
qdass
Next ⟩
qdassr
Metamath Proof Explorer
Ascii
Unicode
Theorem
qdass
Description:
Two ways to write an unordered quadruple.
(Contributed by
Mario Carneiro
, 5-Jan-2016)
Ref
Expression
Assertion
qdass
⊢
A
B
∪
C
D
=
A
B
C
∪
D
Proof
Step
Hyp
Ref
Expression
1
unass
⊢
A
B
∪
C
∪
D
=
A
B
∪
C
∪
D
2
df-tp
⊢
A
B
C
=
A
B
∪
C
3
2
uneq1i
⊢
A
B
C
∪
D
=
A
B
∪
C
∪
D
4
df-pr
⊢
C
D
=
C
∪
D
5
4
uneq2i
⊢
A
B
∪
C
D
=
A
B
∪
C
∪
D
6
1
3
5
3eqtr4ri
⊢
A
B
∪
C
D
=
A
B
C
∪
D