Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
qdassr
Next ⟩
tpidm12
Metamath Proof Explorer
Ascii
Unicode
Theorem
qdassr
Description:
Two ways to write an unordered quadruple.
(Contributed by
Mario Carneiro
, 5-Jan-2016)
Ref
Expression
Assertion
qdassr
⊢
A
B
∪
C
D
=
A
∪
B
C
D
Proof
Step
Hyp
Ref
Expression
1
unass
⊢
A
∪
B
∪
C
D
=
A
∪
B
∪
C
D
2
df-pr
⊢
A
B
=
A
∪
B
3
2
uneq1i
⊢
A
B
∪
C
D
=
A
∪
B
∪
C
D
4
tpass
⊢
B
C
D
=
B
∪
C
D
5
4
uneq2i
⊢
A
∪
B
C
D
=
A
∪
B
∪
C
D
6
1
3
5
3eqtr4i
⊢
A
B
∪
C
D
=
A
∪
B
C
D