Metamath Proof Explorer


Theorem qdassr

Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion qdassr A B C D = A B C D

Proof

Step Hyp Ref Expression
1 unass A B C D = A B C D
2 df-pr A B = A B
3 2 uneq1i A B C D = A B C D
4 tpass B C D = B C D
5 4 uneq2i A B C D = A B C D
6 1 3 5 3eqtr4i A B C D = A B C D