Step |
Hyp |
Ref |
Expression |
1 |
|
qeqnumdivden |
|
2 |
1
|
adantr |
|
3 |
|
oveq2 |
|
4 |
3
|
adantl |
|
5 |
|
qnumcl |
|
6 |
5
|
adantr |
|
7 |
6
|
zcnd |
|
8 |
7
|
div1d |
|
9 |
2 4 8
|
3eqtrd |
|
10 |
9 6
|
eqeltrd |
|
11 |
|
simpr |
|
12 |
11
|
zcnd |
|
13 |
12
|
div1d |
|
14 |
13
|
fveq2d |
|
15 |
|
1nn |
|
16 |
|
divdenle |
|
17 |
11 15 16
|
sylancl |
|
18 |
14 17
|
eqbrtrrd |
|
19 |
|
qdencl |
|
20 |
19
|
adantr |
|
21 |
|
nnle1eq1 |
|
22 |
20 21
|
syl |
|
23 |
18 22
|
mpbid |
|
24 |
10 23
|
impbida |
|