Metamath Proof Explorer


Theorem qden1elz

Description: A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion qden1elz A denom A = 1 A

Proof

Step Hyp Ref Expression
1 qeqnumdivden A A = numer A denom A
2 1 adantr A denom A = 1 A = numer A denom A
3 oveq2 denom A = 1 numer A denom A = numer A 1
4 3 adantl A denom A = 1 numer A denom A = numer A 1
5 qnumcl A numer A
6 5 adantr A denom A = 1 numer A
7 6 zcnd A denom A = 1 numer A
8 7 div1d A denom A = 1 numer A 1 = numer A
9 2 4 8 3eqtrd A denom A = 1 A = numer A
10 9 6 eqeltrd A denom A = 1 A
11 simpr A A A
12 11 zcnd A A A
13 12 div1d A A A 1 = A
14 13 fveq2d A A denom A 1 = denom A
15 1nn 1
16 divdenle A 1 denom A 1 1
17 11 15 16 sylancl A A denom A 1 1
18 14 17 eqbrtrrd A A denom A 1
19 qdencl A denom A
20 19 adantr A A denom A
21 nnle1eq1 denom A denom A 1 denom A = 1
22 20 21 syl A A denom A 1 denom A = 1
23 18 22 mpbid A A denom A = 1
24 10 23 impbida A denom A = 1 A