Step |
Hyp |
Ref |
Expression |
1 |
|
retop |
|
2 |
|
qssre |
|
3 |
|
uniretop |
|
4 |
3
|
clsss3 |
|
5 |
1 2 4
|
mp2an |
|
6 |
|
ioof |
|
7 |
|
ffn |
|
8 |
|
ovelrn |
|
9 |
6 7 8
|
mp2b |
|
10 |
|
elioo3g |
|
11 |
10
|
simplbi |
|
12 |
11
|
simp1d |
|
13 |
12
|
ad2antrr |
|
14 |
11
|
simp2d |
|
15 |
14
|
ad2antrr |
|
16 |
|
qre |
|
17 |
16
|
ad2antlr |
|
18 |
17
|
rexrd |
|
19 |
13 15 18
|
3jca |
|
20 |
|
simpr |
|
21 |
|
elioo3g |
|
22 |
19 20 21
|
sylanbrc |
|
23 |
|
simplr |
|
24 |
|
inelcm |
|
25 |
22 23 24
|
syl2anc |
|
26 |
11
|
simp3d |
|
27 |
|
eliooord |
|
28 |
27
|
simpld |
|
29 |
27
|
simprd |
|
30 |
12 26 14 28 29
|
xrlttrd |
|
31 |
|
qbtwnxr |
|
32 |
12 14 30 31
|
syl3anc |
|
33 |
25 32
|
r19.29a |
|
34 |
33
|
a1i |
|
35 |
|
eleq2 |
|
36 |
|
ineq1 |
|
37 |
36
|
neeq1d |
|
38 |
34 35 37
|
3imtr4d |
|
39 |
38
|
rexlimivw |
|
40 |
39
|
rexlimivw |
|
41 |
9 40
|
sylbi |
|
42 |
41
|
rgen |
|
43 |
|
eqidd |
|
44 |
3
|
a1i |
|
45 |
|
retopbas |
|
46 |
45
|
a1i |
|
47 |
2
|
a1i |
|
48 |
|
id |
|
49 |
43 44 46 47 48
|
elcls3 |
|
50 |
42 49
|
mpbiri |
|
51 |
50
|
ssriv |
|
52 |
5 51
|
eqssi |
|