Database
BASIC TOPOLOGY
Metric spaces
Topology on the reals
qdensere2
Next ⟩
blcvx
Metamath Proof Explorer
Ascii
Unicode
Theorem
qdensere2
Description:
QQ
is dense in
RR
.
(Contributed by
NM
, 24-Aug-2007)
Ref
Expression
Hypotheses
remet.1
⊢
D
=
abs
∘
−
↾
ℝ
2
tgioo.2
⊢
J
=
MetOpen
⁡
D
Assertion
qdensere2
⊢
cls
⁡
J
⁡
ℚ
=
ℝ
Proof
Step
Hyp
Ref
Expression
1
remet.1
⊢
D
=
abs
∘
−
↾
ℝ
2
2
tgioo.2
⊢
J
=
MetOpen
⁡
D
3
1
2
tgioo
⊢
topGen
⁡
ran
⁡
.
=
J
4
3
fveq2i
⊢
cls
⁡
topGen
⁡
ran
⁡
.
=
cls
⁡
J
5
4
fveq1i
⊢
cls
⁡
topGen
⁡
ran
⁡
.
⁡
ℚ
=
cls
⁡
J
⁡
ℚ
6
qdensere
⊢
cls
⁡
topGen
⁡
ran
⁡
.
⁡
ℚ
=
ℝ
7
5
6
eqtr3i
⊢
cls
⁡
J
⁡
ℚ
=
ℝ