Metamath Proof Explorer


Theorem qdensere2

Description: QQ is dense in RR . (Contributed by NM, 24-Aug-2007)

Ref Expression
Hypotheses remet.1 D = abs 2
tgioo.2 J = MetOpen D
Assertion qdensere2 cls J =

Proof

Step Hyp Ref Expression
1 remet.1 D = abs 2
2 tgioo.2 J = MetOpen D
3 1 2 tgioo topGen ran . = J
4 3 fveq2i cls topGen ran . = cls J
5 4 fveq1i cls topGen ran . = cls J
6 qdensere cls topGen ran . =
7 5 6 eqtr3i cls J =