Database
REAL AND COMPLEX NUMBERS
Integer sets
Rational numbers (as a subset of complex numbers)
qdivcl
Next ⟩
qrevaddcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
qdivcl
Description:
Closure of division of rationals.
(Contributed by
NM
, 3-Aug-2004)
Ref
Expression
Assertion
qdivcl
⊢
A
∈
ℚ
∧
B
∈
ℚ
∧
B
≠
0
→
A
B
∈
ℚ
Proof
Step
Hyp
Ref
Expression
1
qcn
⊢
A
∈
ℚ
→
A
∈
ℂ
2
qcn
⊢
B
∈
ℚ
→
B
∈
ℂ
3
id
⊢
B
≠
0
→
B
≠
0
4
divrec
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
=
A
⁢
1
B
5
1
2
3
4
syl3an
⊢
A
∈
ℚ
∧
B
∈
ℚ
∧
B
≠
0
→
A
B
=
A
⁢
1
B
6
qreccl
⊢
B
∈
ℚ
∧
B
≠
0
→
1
B
∈
ℚ
7
qmulcl
⊢
A
∈
ℚ
∧
1
B
∈
ℚ
→
A
⁢
1
B
∈
ℚ
8
6
7
sylan2
⊢
A
∈
ℚ
∧
B
∈
ℚ
∧
B
≠
0
→
A
⁢
1
B
∈
ℚ
9
8
3impb
⊢
A
∈
ℚ
∧
B
∈
ℚ
∧
B
≠
0
→
A
⁢
1
B
∈
ℚ
10
5
9
eqeltrd
⊢
A
∈
ℚ
∧
B
∈
ℚ
∧
B
≠
0
→
A
B
∈
ℚ