Metamath Proof Explorer


Theorem qdivcl

Description: Closure of division of rationals. (Contributed by NM, 3-Aug-2004)

Ref Expression
Assertion qdivcl A B B 0 A B

Proof

Step Hyp Ref Expression
1 qcn A A
2 qcn B B
3 id B 0 B 0
4 divrec A B B 0 A B = A 1 B
5 1 2 3 4 syl3an A B B 0 A B = A 1 B
6 qreccl B B 0 1 B
7 qmulcl A 1 B A 1 B
8 6 7 sylan2 A B B 0 A 1 B
9 8 3impb A B B 0 A 1 B
10 5 9 eqeltrd A B B 0 A B