Metamath Proof Explorer


Theorem qelioo

Description: The rational numbers are dense in RR* : any two extended real numbers have a rational between them. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses qelioo.1 φ A *
qelioo.2 φ B *
qelioo.3 φ A < B
Assertion qelioo φ x x A B

Proof

Step Hyp Ref Expression
1 qelioo.1 φ A *
2 qelioo.2 φ B *
3 qelioo.3 φ A < B
4 qbtwnxr A * B * A < B x A < x x < B
5 1 2 3 4 syl3anc φ x A < x x < B
6 1 ad2antrr φ x A < x x < B A *
7 2 ad2antrr φ x A < x x < B B *
8 qre x x
9 8 ad2antlr φ x A < x x < B x
10 simprl φ x A < x x < B A < x
11 simprr φ x A < x x < B x < B
12 6 7 9 10 11 eliood φ x A < x x < B x A B
13 12 ex φ x A < x x < B x A B
14 13 reximdva φ x A < x x < B x x A B
15 5 14 mpd φ x x A B