Metamath Proof Explorer


Theorem qerclwwlknfi

Description: The quotient set of the set of closed walks (defined as words) with a fixed length according to the equivalence relation .~ is finite. (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Hypotheses erclwwlkn.w W = N ClWWalksN G
erclwwlkn.r ˙ = t u | t W u W n 0 N t = u cyclShift n
Assertion qerclwwlknfi Vtx G Fin W / ˙ Fin

Proof

Step Hyp Ref Expression
1 erclwwlkn.w W = N ClWWalksN G
2 erclwwlkn.r ˙ = t u | t W u W n 0 N t = u cyclShift n
3 clwwlknfi Vtx G Fin N ClWWalksN G Fin
4 1 3 eqeltrid Vtx G Fin W Fin
5 pwfi W Fin 𝒫 W Fin
6 4 5 sylib Vtx G Fin 𝒫 W Fin
7 1 2 erclwwlkn ˙ Er W
8 7 a1i Vtx G Fin ˙ Er W
9 8 qsss Vtx G Fin W / ˙ 𝒫 W
10 6 9 ssfid Vtx G Fin W / ˙ Fin