Metamath Proof Explorer


Theorem qexALT

Description: Alternate proof of qex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion qexALT V

Proof

Step Hyp Ref Expression
1 elq x y z x = y z
2 eqid y , z y z = y , z y z
3 ovex y z V
4 2 3 elrnmpo x ran y , z y z y z x = y z
5 1 4 bitr4i x x ran y , z y z
6 5 eqriv = ran y , z y z
7 zexALT V
8 nnexALT V
9 7 8 mpoex y , z y z V
10 9 rnex ran y , z y z V
11 6 10 eqeltri V