Metamath Proof Explorer


Theorem qextle

Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion qextle A * B * A = B x x A x B

Proof

Step Hyp Ref Expression
1 breq2 A = B x A x B
2 1 ralrimivw A = B x x A x B
3 xrlttri2 A * B * A B A < B B < A
4 qextltlem A * B * A < B x ¬ x < A x < B ¬ x A x B
5 simpr ¬ x < A x < B ¬ x A x B ¬ x A x B
6 5 reximi x ¬ x < A x < B ¬ x A x B x ¬ x A x B
7 4 6 syl6 A * B * A < B x ¬ x A x B
8 qextltlem B * A * B < A x ¬ x < B x < A ¬ x B x A
9 simpr ¬ x < B x < A ¬ x B x A ¬ x B x A
10 bicom x B x A x A x B
11 9 10 sylnib ¬ x < B x < A ¬ x B x A ¬ x A x B
12 11 reximi x ¬ x < B x < A ¬ x B x A x ¬ x A x B
13 8 12 syl6 B * A * B < A x ¬ x A x B
14 13 ancoms A * B * B < A x ¬ x A x B
15 7 14 jaod A * B * A < B B < A x ¬ x A x B
16 3 15 sylbid A * B * A B x ¬ x A x B
17 rexnal x ¬ x A x B ¬ x x A x B
18 16 17 syl6ib A * B * A B ¬ x x A x B
19 18 necon4ad A * B * x x A x B A = B
20 2 19 impbid2 A * B * A = B x x A x B