Metamath Proof Explorer


Theorem qextltlem

Description: Lemma for qextlt and qextle . (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion qextltlem A * B * A < B x ¬ x < A x < B ¬ x A x B

Proof

Step Hyp Ref Expression
1 qbtwnxr A * B * A < B x A < x x < B
2 1 3expia A * B * A < B x A < x x < B
3 simprl A * B * x A < x x < B A < x
4 simplll A * B * x A < x x < B A *
5 qre x x
6 5 rexrd x x *
7 6 ad2antlr A * B * x A < x x < B x *
8 xrltnle A * x * A < x ¬ x A
9 4 7 8 syl2anc A * B * x A < x x < B A < x ¬ x A
10 3 9 mpbid A * B * x A < x x < B ¬ x A
11 xrltle x * A * x < A x A
12 7 4 11 syl2anc A * B * x A < x x < B x < A x A
13 10 12 mtod A * B * x A < x x < B ¬ x < A
14 simprr A * B * x A < x x < B x < B
15 13 14 2thd A * B * x A < x x < B ¬ x < A x < B
16 nbbn ¬ x < A x < B ¬ x < A x < B
17 15 16 sylib A * B * x A < x x < B ¬ x < A x < B
18 simpllr A * B * x A < x x < B B *
19 7 18 14 xrltled A * B * x A < x x < B x B
20 10 19 2thd A * B * x A < x x < B ¬ x A x B
21 nbbn ¬ x A x B ¬ x A x B
22 20 21 sylib A * B * x A < x x < B ¬ x A x B
23 17 22 jca A * B * x A < x x < B ¬ x < A x < B ¬ x A x B
24 23 ex A * B * x A < x x < B ¬ x < A x < B ¬ x A x B
25 24 reximdva A * B * x A < x x < B x ¬ x < A x < B ¬ x A x B
26 2 25 syld A * B * A < B x ¬ x < A x < B ¬ x A x B