Metamath Proof Explorer


Theorem qgt0numnn

Description: A rational is positive iff its canonical numerator is a positive integer. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion qgt0numnn A 0 < A numer A

Proof

Step Hyp Ref Expression
1 qnumcl A numer A
2 1 adantr A 0 < A numer A
3 qnumgt0 A 0 < A 0 < numer A
4 3 biimpa A 0 < A 0 < numer A
5 elnnz numer A numer A 0 < numer A
6 2 4 5 sylanbrc A 0 < A numer A