Step |
Hyp |
Ref |
Expression |
1 |
|
qinioo.a |
|
2 |
|
qinioo.b |
|
3 |
|
simplr |
|
4 |
1 2
|
xrltnled |
|
5 |
4
|
biimpar |
|
6 |
1
|
adantr |
|
7 |
2
|
adantr |
|
8 |
|
simpr |
|
9 |
|
qbtwnxr |
|
10 |
6 7 8 9
|
syl3anc |
|
11 |
1
|
ad2antrr |
|
12 |
2
|
ad2antrr |
|
13 |
|
qre |
|
14 |
13
|
ad2antlr |
|
15 |
|
simprl |
|
16 |
|
simprr |
|
17 |
11 12 14 15 16
|
eliood |
|
18 |
17
|
ex |
|
19 |
18
|
adantlr |
|
20 |
19
|
reximdva |
|
21 |
10 20
|
mpd |
|
22 |
|
inn0 |
|
23 |
21 22
|
sylibr |
|
24 |
5 23
|
syldan |
|
25 |
24
|
neneqd |
|
26 |
25
|
adantlr |
|
27 |
3 26
|
condan |
|
28 |
|
ioo0 |
|
29 |
1 2 28
|
syl2anc |
|
30 |
29
|
biimpar |
|
31 |
|
ineq2 |
|
32 |
|
in0 |
|
33 |
31 32
|
eqtrdi |
|
34 |
30 33
|
syl |
|
35 |
27 34
|
impbida |
|