Step |
Hyp |
Ref |
Expression |
1 |
|
eldifn |
|
2 |
1
|
3ad2ant1 |
|
3 |
2
|
adantr |
|
4 |
|
simpll1 |
|
5 |
4
|
eldifad |
|
6 |
|
simp2r |
|
7 |
6
|
ad2antrr |
|
8 |
|
qcn |
|
9 |
7 8
|
syl |
|
10 |
|
simp3r |
|
11 |
10
|
ad2antrr |
|
12 |
|
qcn |
|
13 |
11 12
|
syl |
|
14 |
5 9 13
|
subdid |
|
15 |
|
qsubcl |
|
16 |
7 11 15
|
syl2anc |
|
17 |
|
qcn |
|
18 |
16 17
|
syl |
|
19 |
18 5
|
mulcomd |
|
20 |
|
simplr |
|
21 |
|
simp2l |
|
22 |
21
|
ad2antrr |
|
23 |
|
qcn |
|
24 |
22 23
|
syl |
|
25 |
5 9
|
mulcld |
|
26 |
|
simp3l |
|
27 |
26
|
ad2antrr |
|
28 |
|
qcn |
|
29 |
27 28
|
syl |
|
30 |
5 13
|
mulcld |
|
31 |
24 25 29 30
|
addsubeq4d |
|
32 |
20 31
|
mpbid |
|
33 |
14 19 32
|
3eqtr4d |
|
34 |
|
qsubcl |
|
35 |
27 22 34
|
syl2anc |
|
36 |
|
qcn |
|
37 |
35 36
|
syl |
|
38 |
|
simpr |
|
39 |
|
subeq0 |
|
40 |
39
|
necon3abid |
|
41 |
9 13 40
|
syl2anc |
|
42 |
38 41
|
mpbird |
|
43 |
37 18 5 42
|
divmuld |
|
44 |
33 43
|
mpbird |
|
45 |
|
qdivcl |
|
46 |
35 16 42 45
|
syl3anc |
|
47 |
44 46
|
eqeltrrd |
|
48 |
47
|
ex |
|
49 |
3 48
|
mt3d |
|
50 |
|
simpl2l |
|
51 |
50 23
|
syl |
|
52 |
51
|
adantr |
|
53 |
|
simpl3l |
|
54 |
53 28
|
syl |
|
55 |
54
|
adantr |
|
56 |
|
simpl1 |
|
57 |
56
|
eldifad |
|
58 |
|
simpl3r |
|
59 |
58 12
|
syl |
|
60 |
57 59
|
mulcld |
|
61 |
60
|
adantr |
|
62 |
|
simpr |
|
63 |
62
|
eqcomd |
|
64 |
63
|
oveq2d |
|
65 |
64
|
oveq2d |
|
66 |
|
simplr |
|
67 |
65 66
|
eqtrd |
|
68 |
52 55 61 67
|
addcan2ad |
|
69 |
68
|
ex |
|
70 |
49 69
|
jcai |
|
71 |
70
|
ancomd |
|
72 |
71
|
ex |
|
73 |
|
id |
|
74 |
|
oveq2 |
|
75 |
73 74
|
oveqan12d |
|
76 |
72 75
|
impbid1 |
|