Metamath Proof Explorer


Theorem qliftel

Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1 F = ran x X x R A
qlift.2 φ x X A Y
qlift.3 φ R Er X
qlift.4 φ X V
Assertion qliftel φ C R F D x X C R x D = A

Proof

Step Hyp Ref Expression
1 qlift.1 F = ran x X x R A
2 qlift.2 φ x X A Y
3 qlift.3 φ R Er X
4 qlift.4 φ X V
5 1 2 3 4 qliftlem φ x X x R X / R
6 1 5 2 fliftel φ C R F D x X C R = x R D = A
7 3 adantr φ x X R Er X
8 simpr φ x X x X
9 7 8 erth2 φ x X C R x C R = x R
10 9 anbi1d φ x X C R x D = A C R = x R D = A
11 10 rexbidva φ x X C R x D = A x X C R = x R D = A
12 6 11 bitr4d φ C R F D x X C R x D = A