Metamath Proof Explorer


Theorem qliftfund

Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1 F = ran x X x R A
qlift.2 φ x X A Y
qlift.3 φ R Er X
qlift.4 φ X V
qliftfun.4 x = y A = B
qliftfund.6 φ x R y A = B
Assertion qliftfund φ Fun F

Proof

Step Hyp Ref Expression
1 qlift.1 F = ran x X x R A
2 qlift.2 φ x X A Y
3 qlift.3 φ R Er X
4 qlift.4 φ X V
5 qliftfun.4 x = y A = B
6 qliftfund.6 φ x R y A = B
7 6 ex φ x R y A = B
8 7 alrimivv φ x y x R y A = B
9 1 2 3 4 5 qliftfun φ Fun F x y x R y A = B
10 8 9 mpbird φ Fun F