Metamath Proof Explorer


Theorem qliftfuns

Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1 F = ran x X x R A
qlift.2 φ x X A Y
qlift.3 φ R Er X
qlift.4 φ X V
Assertion qliftfuns φ Fun F y z y R z y / x A = z / x A

Proof

Step Hyp Ref Expression
1 qlift.1 F = ran x X x R A
2 qlift.2 φ x X A Y
3 qlift.3 φ R Er X
4 qlift.4 φ X V
5 nfcv _ y x R A
6 nfcv _ x y R
7 nfcsb1v _ x y / x A
8 6 7 nfop _ x y R y / x A
9 eceq1 x = y x R = y R
10 csbeq1a x = y A = y / x A
11 9 10 opeq12d x = y x R A = y R y / x A
12 5 8 11 cbvmpt x X x R A = y X y R y / x A
13 12 rneqi ran x X x R A = ran y X y R y / x A
14 1 13 eqtri F = ran y X y R y / x A
15 2 ralrimiva φ x X A Y
16 7 nfel1 x y / x A Y
17 10 eleq1d x = y A Y y / x A Y
18 16 17 rspc y X x X A Y y / x A Y
19 15 18 mpan9 φ y X y / x A Y
20 csbeq1 y = z y / x A = z / x A
21 14 19 3 4 20 qliftfun φ Fun F y z y R z y / x A = z / x A