Metamath Proof Explorer


Theorem qmuldeneqnum

Description: Multiplying a rational by its denominator results in an integer. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion qmuldeneqnum A A denom A = numer A

Proof

Step Hyp Ref Expression
1 qeqnumdivden A A = numer A denom A
2 1 oveq1d A A denom A = numer A denom A denom A
3 qnumcl A numer A
4 3 zcnd A numer A
5 qdencl A denom A
6 5 nncnd A denom A
7 5 nnne0d A denom A 0
8 4 6 7 divcan1d A numer A denom A denom A = numer A
9 2 8 eqtrd A A denom A = numer A