Metamath Proof Explorer


Theorem qnnen

Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set ( ZZ X. NN ) is numerable. Exercise 2 of Enderton p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004) (Revised by Mario Carneiro, 3-Mar-2013)

Ref Expression
Assertion qnnen

Proof

Step Hyp Ref Expression
1 omelon ω On
2 nnenom ω
3 2 ensymi ω
4 isnumi ω On ω dom card
5 1 3 4 mp2an dom card
6 znnen
7 ennum dom card dom card
8 6 7 ax-mp dom card dom card
9 5 8 mpbir dom card
10 xpnum dom card dom card × dom card
11 9 5 10 mp2an × dom card
12 eqid x , y x y = x , y x y
13 ovex x y V
14 12 13 fnmpoi x , y x y Fn ×
15 12 rnmpo ran x , y x y = z | x y z = x y
16 elq z x y z = x y
17 16 abbi2i = z | x y z = x y
18 15 17 eqtr4i ran x , y x y =
19 df-fo x , y x y : × onto x , y x y Fn × ran x , y x y =
20 14 18 19 mpbir2an x , y x y : × onto
21 fodomnum × dom card x , y x y : × onto ×
22 11 20 21 mp2 ×
23 nnex V
24 23 enref
25 xpen × ×
26 6 24 25 mp2an × ×
27 xpnnen ×
28 26 27 entri ×
29 domentr × ×
30 22 28 29 mp2an
31 qex V
32 nnssq
33 ssdomg V
34 31 32 33 mp2
35 sbth
36 30 34 35 mp2an