Metamath Proof Explorer


Theorem qnumgt0

Description: A rational is positive iff its canonical numerator is. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion qnumgt0 A 0 < A 0 < numer A

Proof

Step Hyp Ref Expression
1 0red A 0
2 qre A A
3 qdencl A denom A
4 3 nnred A denom A
5 3 nngt0d A 0 < denom A
6 ltmul1 0 A denom A 0 < denom A 0 < A 0 denom A < A denom A
7 1 2 4 5 6 syl112anc A 0 < A 0 denom A < A denom A
8 3 nncnd A denom A
9 8 mul02d A 0 denom A = 0
10 qmuldeneqnum A A denom A = numer A
11 9 10 breq12d A 0 denom A < A denom A 0 < numer A
12 7 11 bitrd A 0 < A 0 < numer A