Database
REAL AND COMPLEX NUMBERS
Integer sets
Rational numbers (as a subset of complex numbers)
qre
Next ⟩
zq
Metamath Proof Explorer
Ascii
Unicode
Theorem
qre
Description:
A rational number is a real number.
(Contributed by
NM
, 14-Nov-2002)
Ref
Expression
Assertion
qre
⊢
A
∈
ℚ
→
A
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
elq
⊢
A
∈
ℚ
↔
∃
x
∈
ℤ
∃
y
∈
ℕ
A
=
x
y
2
zre
⊢
x
∈
ℤ
→
x
∈
ℝ
3
nnre
⊢
y
∈
ℕ
→
y
∈
ℝ
4
nnne0
⊢
y
∈
ℕ
→
y
≠
0
5
3
4
jca
⊢
y
∈
ℕ
→
y
∈
ℝ
∧
y
≠
0
6
redivcl
⊢
x
∈
ℝ
∧
y
∈
ℝ
∧
y
≠
0
→
x
y
∈
ℝ
7
6
3expb
⊢
x
∈
ℝ
∧
y
∈
ℝ
∧
y
≠
0
→
x
y
∈
ℝ
8
2
5
7
syl2an
⊢
x
∈
ℤ
∧
y
∈
ℕ
→
x
y
∈
ℝ
9
eleq1
⊢
A
=
x
y
→
A
∈
ℝ
↔
x
y
∈
ℝ
10
8
9
syl5ibrcom
⊢
x
∈
ℤ
∧
y
∈
ℕ
→
A
=
x
y
→
A
∈
ℝ
11
10
rexlimivv
⊢
∃
x
∈
ℤ
∃
y
∈
ℕ
A
=
x
y
→
A
∈
ℝ
12
1
11
sylbi
⊢
A
∈
ℚ
→
A
∈
ℝ