Metamath Proof Explorer


Theorem qrevaddcl

Description: Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion qrevaddcl BAA+BA

Proof

Step Hyp Ref Expression
1 qcn BB
2 pncan ABA+B-B=A
3 1 2 sylan2 ABA+B-B=A
4 3 ancoms BAA+B-B=A
5 4 adantr BAA+BA+B-B=A
6 qsubcl A+BBA+B-B
7 6 ancoms BA+BA+B-B
8 7 adantlr BAA+BA+B-B
9 5 8 eqeltrrd BAA+BA
10 9 ex BAA+BA
11 qaddcl ABA+B
12 11 expcom BAA+B
13 12 adantr BAAA+B
14 10 13 impbid BAA+BA
15 14 pm5.32da BAA+BAA
16 qcn AA
17 16 pm4.71ri AAA
18 15 17 bitr4di BAA+BA