Database
REAL AND COMPLEX NUMBERS
Integer sets
Rational numbers (as a subset of complex numbers)
qrevaddcl
Next ⟩
nnrecq
Metamath Proof Explorer
Ascii
Unicode
Theorem
qrevaddcl
Description:
Reverse closure law for addition of rationals.
(Contributed by
NM
, 2-Aug-2004)
Ref
Expression
Assertion
qrevaddcl
⊢
B
∈
ℚ
→
A
∈
ℂ
∧
A
+
B
∈
ℚ
↔
A
∈
ℚ
Proof
Step
Hyp
Ref
Expression
1
qcn
⊢
B
∈
ℚ
→
B
∈
ℂ
2
pncan
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
-
B
=
A
3
1
2
sylan2
⊢
A
∈
ℂ
∧
B
∈
ℚ
→
A
+
B
-
B
=
A
4
3
ancoms
⊢
B
∈
ℚ
∧
A
∈
ℂ
→
A
+
B
-
B
=
A
5
4
adantr
⊢
B
∈
ℚ
∧
A
∈
ℂ
∧
A
+
B
∈
ℚ
→
A
+
B
-
B
=
A
6
qsubcl
⊢
A
+
B
∈
ℚ
∧
B
∈
ℚ
→
A
+
B
-
B
∈
ℚ
7
6
ancoms
⊢
B
∈
ℚ
∧
A
+
B
∈
ℚ
→
A
+
B
-
B
∈
ℚ
8
7
adantlr
⊢
B
∈
ℚ
∧
A
∈
ℂ
∧
A
+
B
∈
ℚ
→
A
+
B
-
B
∈
ℚ
9
5
8
eqeltrrd
⊢
B
∈
ℚ
∧
A
∈
ℂ
∧
A
+
B
∈
ℚ
→
A
∈
ℚ
10
9
ex
⊢
B
∈
ℚ
∧
A
∈
ℂ
→
A
+
B
∈
ℚ
→
A
∈
ℚ
11
qaddcl
⊢
A
∈
ℚ
∧
B
∈
ℚ
→
A
+
B
∈
ℚ
12
11
expcom
⊢
B
∈
ℚ
→
A
∈
ℚ
→
A
+
B
∈
ℚ
13
12
adantr
⊢
B
∈
ℚ
∧
A
∈
ℂ
→
A
∈
ℚ
→
A
+
B
∈
ℚ
14
10
13
impbid
⊢
B
∈
ℚ
∧
A
∈
ℂ
→
A
+
B
∈
ℚ
↔
A
∈
ℚ
15
14
pm5.32da
⊢
B
∈
ℚ
→
A
∈
ℂ
∧
A
+
B
∈
ℚ
↔
A
∈
ℂ
∧
A
∈
ℚ
16
qcn
⊢
A
∈
ℚ
→
A
∈
ℂ
17
16
pm4.71ri
⊢
A
∈
ℚ
↔
A
∈
ℂ
∧
A
∈
ℚ
18
15
17
bitr4di
⊢
B
∈
ℚ
→
A
∈
ℂ
∧
A
+
B
∈
ℚ
↔
A
∈
ℚ