Metamath Proof Explorer


Theorem qsdisj

Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010) (Revised by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses qsdisj.1 φ R Er X
qsdisj.2 φ B A / R
qsdisj.3 φ C A / R
Assertion qsdisj φ B = C B C =

Proof

Step Hyp Ref Expression
1 qsdisj.1 φ R Er X
2 qsdisj.2 φ B A / R
3 qsdisj.3 φ C A / R
4 eqid A / R = A / R
5 eqeq1 x R = B x R = C B = C
6 ineq1 x R = B x R C = B C
7 6 eqeq1d x R = B x R C = B C =
8 5 7 orbi12d x R = B x R = C x R C = B = C B C =
9 eqeq2 y R = C x R = y R x R = C
10 ineq2 y R = C x R y R = x R C
11 10 eqeq1d y R = C x R y R = x R C =
12 9 11 orbi12d y R = C x R = y R x R y R = x R = C x R C =
13 1 ad2antrr φ x A y A R Er X
14 erdisj R Er X x R = y R x R y R =
15 13 14 syl φ x A y A x R = y R x R y R =
16 4 12 15 ectocld φ x A C A / R x R = C x R C =
17 3 16 mpidan φ x A x R = C x R C =
18 4 8 17 ectocld φ B A / R B = C B C =
19 2 18 mpdan φ B = C B C =