Metamath Proof Explorer


Theorem qsdisj2

Description: A quotient set is a disjoint set. (Contributed by Mario Carneiro, 10-Dec-2016)

Ref Expression
Assertion qsdisj2 R Er X Disj x A / R x

Proof

Step Hyp Ref Expression
1 simpl R Er X x A / R y A / R R Er X
2 simprl R Er X x A / R y A / R x A / R
3 simprr R Er X x A / R y A / R y A / R
4 1 2 3 qsdisj R Er X x A / R y A / R x = y x y =
5 4 ralrimivva R Er X x A / R y A / R x = y x y =
6 id x = y x = y
7 6 disjor Disj x A / R x x A / R y A / R x = y x y =
8 5 7 sylibr R Er X Disj x A / R x