Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
qsdisj2
Next ⟩
qsel
Metamath Proof Explorer
Ascii
Unicode
Theorem
qsdisj2
Description:
A quotient set is a disjoint set.
(Contributed by
Mario Carneiro
, 10-Dec-2016)
Ref
Expression
Assertion
qsdisj2
⊢
R
Er
X
→
Disj
x
∈
A
/
R
x
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
R
Er
X
∧
x
∈
A
/
R
∧
y
∈
A
/
R
→
R
Er
X
2
simprl
⊢
R
Er
X
∧
x
∈
A
/
R
∧
y
∈
A
/
R
→
x
∈
A
/
R
3
simprr
⊢
R
Er
X
∧
x
∈
A
/
R
∧
y
∈
A
/
R
→
y
∈
A
/
R
4
1
2
3
qsdisj
⊢
R
Er
X
∧
x
∈
A
/
R
∧
y
∈
A
/
R
→
x
=
y
∨
x
∩
y
=
∅
5
4
ralrimivva
⊢
R
Er
X
→
∀
x
∈
A
/
R
∀
y
∈
A
/
R
x
=
y
∨
x
∩
y
=
∅
6
id
⊢
x
=
y
→
x
=
y
7
6
disjor
⊢
Disj
x
∈
A
/
R
x
↔
∀
x
∈
A
/
R
∀
y
∈
A
/
R
x
=
y
∨
x
∩
y
=
∅
8
5
7
sylibr
⊢
R
Er
X
→
Disj
x
∈
A
/
R
x