Metamath Proof Explorer


Theorem qsdrngi

Description: A quotient by a maximal left and maximal right ideal is a division ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses qsdrng.0 O = opp r R
qsdrng.q Q = R / 𝑠 R ~ QG M
qsdrng.r φ R NzRing
qsdrngi.1 No typesetting found for |- ( ph -> M e. ( MaxIdeal ` R ) ) with typecode |-
qsdrngi.2 No typesetting found for |- ( ph -> M e. ( MaxIdeal ` O ) ) with typecode |-
Assertion qsdrngi φ Q DivRing

Proof

Step Hyp Ref Expression
1 qsdrng.0 O = opp r R
2 qsdrng.q Q = R / 𝑠 R ~ QG M
3 qsdrng.r φ R NzRing
4 qsdrngi.1 Could not format ( ph -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ph -> M e. ( MaxIdeal ` R ) ) with typecode |-
5 qsdrngi.2 Could not format ( ph -> M e. ( MaxIdeal ` O ) ) : No typesetting found for |- ( ph -> M e. ( MaxIdeal ` O ) ) with typecode |-
6 eqid Base R = Base R
7 nzrring R NzRing R Ring
8 3 7 syl φ R Ring
9 6 mxidlidl Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) with typecode |-
10 8 4 9 syl2anc φ M LIdeal R
11 1 opprring R Ring O Ring
12 8 11 syl φ O Ring
13 eqid Base O = Base O
14 13 mxidlidl Could not format ( ( O e. Ring /\ M e. ( MaxIdeal ` O ) ) -> M e. ( LIdeal ` O ) ) : No typesetting found for |- ( ( O e. Ring /\ M e. ( MaxIdeal ` O ) ) -> M e. ( LIdeal ` O ) ) with typecode |-
15 12 5 14 syl2anc φ M LIdeal O
16 10 15 elind φ M LIdeal R LIdeal O
17 eqid LIdeal R = LIdeal R
18 eqid LIdeal O = LIdeal O
19 eqid 2Ideal R = 2Ideal R
20 17 1 18 19 2idlval 2Ideal R = LIdeal R LIdeal O
21 16 20 eleqtrrdi φ M 2Ideal R
22 6 mxidlnr Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M =/= ( Base ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M =/= ( Base ` R ) ) with typecode |-
23 8 4 22 syl2anc φ M Base R
24 2 6 8 3 21 23 qsnzr φ Q NzRing
25 eqid 1 Q = 1 Q
26 eqid 0 Q = 0 Q
27 25 26 nzrnz Q NzRing 1 Q 0 Q
28 24 27 syl φ 1 Q 0 Q
29 eqid Base Q = Base Q
30 eqid Q = Q
31 eqid Unit Q = Unit Q
32 2 19 qusring R Ring M 2Ideal R Q Ring
33 8 21 32 syl2anc φ Q Ring
34 33 ad10antr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R Q Ring
35 34 adantr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M Q Ring
36 eldifi u Base Q 0 Q u Base Q
37 36 adantl φ u Base Q 0 Q u Base Q
38 37 ad10antr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M u Base Q
39 ovex R ~ QG M V
40 39 ecelqsi r Base R r R ~ QG M Base R / R ~ QG M
41 40 ad4antlr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M r R ~ QG M Base R / R ~ QG M
42 2 a1i φ Q = R / 𝑠 R ~ QG M
43 eqidd φ Base R = Base R
44 ovexd φ R ~ QG M V
45 42 43 44 3 qusbas φ Base R / R ~ QG M = Base Q
46 45 adantr φ u Base Q 0 Q Base R / R ~ QG M = Base Q
47 46 ad10antr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M Base R / R ~ QG M = Base Q
48 41 47 eleqtrd φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M r R ~ QG M Base Q
49 39 ecelqsi s Base R s R ~ QG M Base R / R ~ QG M
50 49 ad2antlr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M s R ~ QG M Base R / R ~ QG M
51 50 47 eleqtrd φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M s R ~ QG M Base Q
52 simpllr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M v = r R ~ QG M
53 simp-9r φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M u = x R ~ QG M
54 53 eqcomd φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M x R ~ QG M = u
55 52 54 oveq12d φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M v Q x R ~ QG M = r R ~ QG M Q u
56 simp-7r φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M v Q x R ~ QG M = 1 Q
57 55 56 eqtr3d φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M r R ~ QG M Q u = 1 Q
58 eqid opp r Q = opp r Q
59 eqid opp r Q = opp r Q
60 29 30 58 59 opprmul s R ~ QG M opp r Q u = u Q s R ~ QG M
61 simp-5r φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M
62 8 ad3antrrr φ u Base Q 0 Q x Base R u = x R ~ QG M R Ring
63 62 ad8antr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M R Ring
64 21 ad3antrrr φ u Base Q 0 Q x Base R u = x R ~ QG M M 2Ideal R
65 64 ad8antr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M M 2Ideal R
66 6 1 2 63 65 29 51 38 opprqusmulr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M s R ~ QG M opp r Q u = s R ~ QG M O / 𝑠 O ~ QG M u
67 simpr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M w = s R ~ QG M
68 6 17 lidlss M LIdeal R M Base R
69 10 68 syl φ M Base R
70 1 6 oppreqg R Ring M Base R R ~ QG M = O ~ QG M
71 8 69 70 syl2anc φ R ~ QG M = O ~ QG M
72 71 ad10antr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R R ~ QG M = O ~ QG M
73 72 adantr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M R ~ QG M = O ~ QG M
74 73 eceq2d φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M x R ~ QG M = x O ~ QG M
75 53 74 eqtr2d φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M x O ~ QG M = u
76 67 75 oveq12d φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = s R ~ QG M O / 𝑠 O ~ QG M u
77 66 76 eqtr4d φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M s R ~ QG M opp r Q u = w O / 𝑠 O ~ QG M x O ~ QG M
78 58 25 oppr1 1 Q = 1 opp r Q
79 6 1 2 8 21 opprqus1r φ 1 opp r Q = 1 O / 𝑠 O ~ QG M
80 78 79 eqtrid φ 1 Q = 1 O / 𝑠 O ~ QG M
81 80 ad10antr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R 1 Q = 1 O / 𝑠 O ~ QG M
82 81 adantr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M 1 Q = 1 O / 𝑠 O ~ QG M
83 61 77 82 3eqtr4d φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M s R ~ QG M opp r Q u = 1 Q
84 60 83 eqtr3id φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M u Q s R ~ QG M = 1 Q
85 29 26 25 30 31 35 38 48 51 57 84 ringinveu φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M s R ~ QG M = r R ~ QG M
86 85 67 52 3eqtr4rd φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M v = w
87 86 oveq2d φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M u Q v = u Q w
88 67 oveq2d φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M u Q w = u Q s R ~ QG M
89 87 88 84 3eqtrd φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M u Q v = 1 Q
90 simp-4r φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M w Base O / 𝑠 O ~ QG M
91 71 qseq2d φ Base R / R ~ QG M = Base R / O ~ QG M
92 91 ad9antr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M Base R / R ~ QG M = Base R / O ~ QG M
93 eqidd φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M O / 𝑠 O ~ QG M = O / 𝑠 O ~ QG M
94 1 6 opprbas Base R = Base O
95 94 a1i φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M Base R = Base O
96 ovexd φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M O ~ QG M V
97 1 fvexi O V
98 97 a1i φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M O V
99 93 95 96 98 qusbas φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M Base R / O ~ QG M = Base O / 𝑠 O ~ QG M
100 92 99 eqtr2d φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M Base O / 𝑠 O ~ QG M = Base R / R ~ QG M
101 90 100 eleqtrd φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M w Base R / R ~ QG M
102 elqsi w Base R / R ~ QG M s Base R w = s R ~ QG M
103 101 102 syl φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M s Base R w = s R ~ QG M
104 89 103 r19.29a φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M u Q v = 1 Q
105 simp-4r φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M v Base Q
106 46 ad6antr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M Base R / R ~ QG M = Base Q
107 105 106 eleqtrrd φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M v Base R / R ~ QG M
108 elqsi v Base R / R ~ QG M r Base R v = r R ~ QG M
109 107 108 syl φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M r Base R v = r R ~ QG M
110 104 109 r19.29a φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M u Q v = 1 Q
111 eqid opp r O = opp r O
112 eqid O / 𝑠 O ~ QG M = O / 𝑠 O ~ QG M
113 3 ad3antrrr φ u Base Q 0 Q x Base R u = x R ~ QG M R NzRing
114 1 opprnzr R NzRing O NzRing
115 113 114 syl φ u Base Q 0 Q x Base R u = x R ~ QG M O NzRing
116 5 ad3antrrr Could not format ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` O ) ) : No typesetting found for |- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` O ) ) with typecode |-
117 4 ad3antrrr Could not format ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` R ) ) with typecode |-
118 1 62 117 opprmxidlabs Could not format ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` ( oppR ` O ) ) ) : No typesetting found for |- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` ( oppR ` O ) ) ) with typecode |-
119 simplr φ u Base Q 0 Q x Base R u = x R ~ QG M x Base R
120 94 a1i φ u Base Q 0 Q x Base R u = x R ~ QG M Base R = Base O
121 119 120 eleqtrd φ u Base Q 0 Q x Base R u = x R ~ QG M x Base O
122 simplr φ u Base Q 0 Q x Base R u = x R ~ QG M x M u = x R ~ QG M
123 8 ringgrpd φ R Grp
124 123 ad4antr φ u Base Q 0 Q x Base R u = x R ~ QG M x M R Grp
125 lidlnsg R Ring M LIdeal R M NrmSGrp R
126 8 10 125 syl2anc φ M NrmSGrp R
127 nsgsubg M NrmSGrp R M SubGrp R
128 126 127 syl φ M SubGrp R
129 128 ad4antr φ u Base Q 0 Q x Base R u = x R ~ QG M x M M SubGrp R
130 simpr φ u Base Q 0 Q x Base R u = x R ~ QG M x M x M
131 eqid R ~ QG M = R ~ QG M
132 131 eqg0el R Grp M SubGrp R x R ~ QG M = M x M
133 132 biimpar R Grp M SubGrp R x M x R ~ QG M = M
134 124 129 130 133 syl21anc φ u Base Q 0 Q x Base R u = x R ~ QG M x M x R ~ QG M = M
135 eqid 0 R = 0 R
136 6 131 135 eqgid M SubGrp R 0 R R ~ QG M = M
137 129 136 syl φ u Base Q 0 Q x Base R u = x R ~ QG M x M 0 R R ~ QG M = M
138 134 137 eqtr4d φ u Base Q 0 Q x Base R u = x R ~ QG M x M x R ~ QG M = 0 R R ~ QG M
139 2 135 qus0 M NrmSGrp R 0 R R ~ QG M = 0 Q
140 126 139 syl φ 0 R R ~ QG M = 0 Q
141 140 ad4antr φ u Base Q 0 Q x Base R u = x R ~ QG M x M 0 R R ~ QG M = 0 Q
142 122 138 141 3eqtrd φ u Base Q 0 Q x Base R u = x R ~ QG M x M u = 0 Q
143 eldifsnneq u Base Q 0 Q ¬ u = 0 Q
144 143 ad4antlr φ u Base Q 0 Q x Base R u = x R ~ QG M x M ¬ u = 0 Q
145 142 144 pm2.65da φ u Base Q 0 Q x Base R u = x R ~ QG M ¬ x M
146 111 112 115 116 118 121 145 qsdrngilem φ u Base Q 0 Q x Base R u = x R ~ QG M w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M
147 146 ad2antrr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q w Base O / 𝑠 O ~ QG M w O / 𝑠 O ~ QG M x O ~ QG M = 1 O / 𝑠 O ~ QG M
148 110 147 r19.29a φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q u Q v = 1 Q
149 simpllr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q u = x R ~ QG M
150 149 oveq2d φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q v Q u = v Q x R ~ QG M
151 simpr φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q v Q x R ~ QG M = 1 Q
152 150 151 eqtrd φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q v Q u = 1 Q
153 148 152 jca φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q u Q v = 1 Q v Q u = 1 Q
154 153 anasss φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q u Q v = 1 Q v Q u = 1 Q
155 1 2 113 117 116 119 145 qsdrngilem φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q v Q x R ~ QG M = 1 Q
156 154 155 reximddv φ u Base Q 0 Q x Base R u = x R ~ QG M v Base Q u Q v = 1 Q v Q u = 1 Q
157 37 46 eleqtrrd φ u Base Q 0 Q u Base R / R ~ QG M
158 elqsi u Base R / R ~ QG M x Base R u = x R ~ QG M
159 157 158 syl φ u Base Q 0 Q x Base R u = x R ~ QG M
160 156 159 r19.29a φ u Base Q 0 Q v Base Q u Q v = 1 Q v Q u = 1 Q
161 160 ralrimiva φ u Base Q 0 Q v Base Q u Q v = 1 Q v Q u = 1 Q
162 29 26 25 30 31 33 isdrng4 φ Q DivRing 1 Q 0 Q u Base Q 0 Q v Base Q u Q v = 1 Q v Q u = 1 Q
163 28 161 162 mpbir2and φ Q DivRing