Step |
Hyp |
Ref |
Expression |
1 |
|
qsdrng.0 |
|
2 |
|
qsdrng.q |
|
3 |
|
qsdrng.r |
|
4 |
|
qsdrngi.1 |
Could not format ( ph -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ph -> M e. ( MaxIdeal ` R ) ) with typecode |- |
5 |
|
qsdrngi.2 |
Could not format ( ph -> M e. ( MaxIdeal ` O ) ) : No typesetting found for |- ( ph -> M e. ( MaxIdeal ` O ) ) with typecode |- |
6 |
|
qsdrngilem.1 |
|
7 |
|
qsdrngilem.2 |
|
8 |
|
simpllr |
|
9 |
|
ovex |
|
10 |
9
|
ecelqsi |
|
11 |
8 10
|
syl |
|
12 |
2
|
a1i |
|
13 |
|
eqid |
|
14 |
13
|
a1i |
|
15 |
|
ovexd |
|
16 |
12 14 15 3
|
qusbas |
|
17 |
16
|
ad3antrrr |
|
18 |
11 17
|
eleqtrd |
|
19 |
|
oveq1 |
|
20 |
19
|
eqeq1d |
|
21 |
20
|
adantl |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
nzrring |
|
25 |
3 24
|
syl |
|
26 |
25
|
ad3antrrr |
|
27 |
13
|
mxidlidl |
Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) with typecode |- |
28 |
25 4 27
|
syl2anc |
|
29 |
1
|
opprring |
|
30 |
25 29
|
syl |
|
31 |
|
eqid |
|
32 |
31
|
mxidlidl |
Could not format ( ( O e. Ring /\ M e. ( MaxIdeal ` O ) ) -> M e. ( LIdeal ` O ) ) : No typesetting found for |- ( ( O e. Ring /\ M e. ( MaxIdeal ` O ) ) -> M e. ( LIdeal ` O ) ) with typecode |- |
33 |
30 5 32
|
syl2anc |
|
34 |
28 33
|
elind |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
35 1 36 37
|
2idlval |
|
39 |
34 38
|
eleqtrrdi |
|
40 |
39
|
ad3antrrr |
|
41 |
6
|
ad3antrrr |
|
42 |
2 13 22 23 26 40 8 41
|
qusmul2 |
|
43 |
|
lidlnsg |
|
44 |
25 28 43
|
syl2anc |
|
45 |
|
nsgsubg |
|
46 |
|
eqid |
|
47 |
13 46
|
eqger |
|
48 |
44 45 47
|
3syl |
|
49 |
48
|
ad3antrrr |
|
50 |
13 35
|
lidlss |
|
51 |
28 50
|
syl |
|
52 |
51
|
ad3antrrr |
|
53 |
13 22 26 8 41
|
ringcld |
|
54 |
|
eqid |
|
55 |
13 54
|
ringidcl |
|
56 |
25 55
|
syl |
|
57 |
56
|
ad3antrrr |
|
58 |
|
simpr |
|
59 |
58
|
oveq2d |
|
60 |
|
eqid |
|
61 |
|
eqid |
|
62 |
|
eqid |
|
63 |
25
|
ringgrpd |
|
64 |
63
|
ad3antrrr |
|
65 |
13 60 61 62 64 53
|
grplinvd |
|
66 |
65
|
oveq1d |
|
67 |
13 62 64 53
|
grpinvcld |
|
68 |
|
simplr |
|
69 |
52 68
|
sseldd |
|
70 |
13 60 64 67 53 69
|
grpassd |
|
71 |
13 60 61 64 69
|
grplidd |
|
72 |
66 70 71
|
3eqtr3d |
|
73 |
59 72
|
eqtrd |
|
74 |
73 68
|
eqeltrd |
|
75 |
13 62 60 46
|
eqgval |
|
76 |
75
|
biimpar |
|
77 |
26 52 53 57 74 76
|
syl23anc |
|
78 |
49 77
|
erthi |
|
79 |
42 78
|
eqtrd |
|
80 |
2 37 54
|
qus1 |
|
81 |
80
|
simprd |
|
82 |
26 40 81
|
syl2anc |
|
83 |
79 82
|
eqtrd |
|
84 |
18 21 83
|
rspcedvd |
|
85 |
6
|
snssd |
|
86 |
51 85
|
unssd |
|
87 |
|
eqid |
|
88 |
87 13 35
|
rspcl |
|
89 |
25 86 88
|
syl2anc |
|
90 |
87 13
|
rspssid |
|
91 |
25 86 90
|
syl2anc |
|
92 |
91
|
unssad |
|
93 |
91
|
unssbd |
|
94 |
|
snssg |
|
95 |
94
|
biimpar |
|
96 |
6 93 95
|
syl2anc |
|
97 |
96 7
|
eldifd |
|
98 |
13 25 4 89 92 97
|
mxidlmaxv |
|
99 |
56 98
|
eleqtrrd |
|
100 |
6 7
|
eldifd |
|
101 |
87 13 61 22 25 60 28 100
|
elrspunsn |
|
102 |
99 101
|
mpbid |
|
103 |
84 102
|
r19.29vva |
|