Metamath Proof Explorer


Theorem qsdrngilem

Description: Lemma for qsdrngi . (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses qsdrng.0 O = opp r R
qsdrng.q Q = R / 𝑠 R ~ QG M
qsdrng.r φ R NzRing
qsdrngi.1 No typesetting found for |- ( ph -> M e. ( MaxIdeal ` R ) ) with typecode |-
qsdrngi.2 No typesetting found for |- ( ph -> M e. ( MaxIdeal ` O ) ) with typecode |-
qsdrngilem.1 φ X Base R
qsdrngilem.2 φ ¬ X M
Assertion qsdrngilem φ v Base Q v Q X R ~ QG M = 1 Q

Proof

Step Hyp Ref Expression
1 qsdrng.0 O = opp r R
2 qsdrng.q Q = R / 𝑠 R ~ QG M
3 qsdrng.r φ R NzRing
4 qsdrngi.1 Could not format ( ph -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ph -> M e. ( MaxIdeal ` R ) ) with typecode |-
5 qsdrngi.2 Could not format ( ph -> M e. ( MaxIdeal ` O ) ) : No typesetting found for |- ( ph -> M e. ( MaxIdeal ` O ) ) with typecode |-
6 qsdrngilem.1 φ X Base R
7 qsdrngilem.2 φ ¬ X M
8 simpllr φ r Base R m M 1 R = r R X + R m r Base R
9 ovex R ~ QG M V
10 9 ecelqsi r Base R r R ~ QG M Base R / R ~ QG M
11 8 10 syl φ r Base R m M 1 R = r R X + R m r R ~ QG M Base R / R ~ QG M
12 2 a1i φ Q = R / 𝑠 R ~ QG M
13 eqid Base R = Base R
14 13 a1i φ Base R = Base R
15 ovexd φ R ~ QG M V
16 12 14 15 3 qusbas φ Base R / R ~ QG M = Base Q
17 16 ad3antrrr φ r Base R m M 1 R = r R X + R m Base R / R ~ QG M = Base Q
18 11 17 eleqtrd φ r Base R m M 1 R = r R X + R m r R ~ QG M Base Q
19 oveq1 v = r R ~ QG M v Q X R ~ QG M = r R ~ QG M Q X R ~ QG M
20 19 eqeq1d v = r R ~ QG M v Q X R ~ QG M = 1 Q r R ~ QG M Q X R ~ QG M = 1 Q
21 20 adantl φ r Base R m M 1 R = r R X + R m v = r R ~ QG M v Q X R ~ QG M = 1 Q r R ~ QG M Q X R ~ QG M = 1 Q
22 eqid R = R
23 eqid Q = Q
24 nzrring R NzRing R Ring
25 3 24 syl φ R Ring
26 25 ad3antrrr φ r Base R m M 1 R = r R X + R m R Ring
27 13 mxidlidl Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) with typecode |-
28 25 4 27 syl2anc φ M LIdeal R
29 1 opprring R Ring O Ring
30 25 29 syl φ O Ring
31 eqid Base O = Base O
32 31 mxidlidl Could not format ( ( O e. Ring /\ M e. ( MaxIdeal ` O ) ) -> M e. ( LIdeal ` O ) ) : No typesetting found for |- ( ( O e. Ring /\ M e. ( MaxIdeal ` O ) ) -> M e. ( LIdeal ` O ) ) with typecode |-
33 30 5 32 syl2anc φ M LIdeal O
34 28 33 elind φ M LIdeal R LIdeal O
35 eqid LIdeal R = LIdeal R
36 eqid LIdeal O = LIdeal O
37 eqid 2Ideal R = 2Ideal R
38 35 1 36 37 2idlval 2Ideal R = LIdeal R LIdeal O
39 34 38 eleqtrrdi φ M 2Ideal R
40 39 ad3antrrr φ r Base R m M 1 R = r R X + R m M 2Ideal R
41 6 ad3antrrr φ r Base R m M 1 R = r R X + R m X Base R
42 2 13 22 23 26 40 8 41 qusmul2 φ r Base R m M 1 R = r R X + R m r R ~ QG M Q X R ~ QG M = r R X R ~ QG M
43 lidlnsg R Ring M LIdeal R M NrmSGrp R
44 25 28 43 syl2anc φ M NrmSGrp R
45 nsgsubg M NrmSGrp R M SubGrp R
46 eqid R ~ QG M = R ~ QG M
47 13 46 eqger M SubGrp R R ~ QG M Er Base R
48 44 45 47 3syl φ R ~ QG M Er Base R
49 48 ad3antrrr φ r Base R m M 1 R = r R X + R m R ~ QG M Er Base R
50 13 35 lidlss M LIdeal R M Base R
51 28 50 syl φ M Base R
52 51 ad3antrrr φ r Base R m M 1 R = r R X + R m M Base R
53 13 22 26 8 41 ringcld φ r Base R m M 1 R = r R X + R m r R X Base R
54 eqid 1 R = 1 R
55 13 54 ringidcl R Ring 1 R Base R
56 25 55 syl φ 1 R Base R
57 56 ad3antrrr φ r Base R m M 1 R = r R X + R m 1 R Base R
58 simpr φ r Base R m M 1 R = r R X + R m 1 R = r R X + R m
59 58 oveq2d φ r Base R m M 1 R = r R X + R m inv g R r R X + R 1 R = inv g R r R X + R r R X + R m
60 eqid + R = + R
61 eqid 0 R = 0 R
62 eqid inv g R = inv g R
63 25 ringgrpd φ R Grp
64 63 ad3antrrr φ r Base R m M 1 R = r R X + R m R Grp
65 13 60 61 62 64 53 grplinvd φ r Base R m M 1 R = r R X + R m inv g R r R X + R r R X = 0 R
66 65 oveq1d φ r Base R m M 1 R = r R X + R m inv g R r R X + R r R X + R m = 0 R + R m
67 13 62 64 53 grpinvcld φ r Base R m M 1 R = r R X + R m inv g R r R X Base R
68 simplr φ r Base R m M 1 R = r R X + R m m M
69 52 68 sseldd φ r Base R m M 1 R = r R X + R m m Base R
70 13 60 64 67 53 69 grpassd φ r Base R m M 1 R = r R X + R m inv g R r R X + R r R X + R m = inv g R r R X + R r R X + R m
71 13 60 61 64 69 grplidd φ r Base R m M 1 R = r R X + R m 0 R + R m = m
72 66 70 71 3eqtr3d φ r Base R m M 1 R = r R X + R m inv g R r R X + R r R X + R m = m
73 59 72 eqtrd φ r Base R m M 1 R = r R X + R m inv g R r R X + R 1 R = m
74 73 68 eqeltrd φ r Base R m M 1 R = r R X + R m inv g R r R X + R 1 R M
75 13 62 60 46 eqgval R Ring M Base R r R X R ~ QG M 1 R r R X Base R 1 R Base R inv g R r R X + R 1 R M
76 75 biimpar R Ring M Base R r R X Base R 1 R Base R inv g R r R X + R 1 R M r R X R ~ QG M 1 R
77 26 52 53 57 74 76 syl23anc φ r Base R m M 1 R = r R X + R m r R X R ~ QG M 1 R
78 49 77 erthi φ r Base R m M 1 R = r R X + R m r R X R ~ QG M = 1 R R ~ QG M
79 42 78 eqtrd φ r Base R m M 1 R = r R X + R m r R ~ QG M Q X R ~ QG M = 1 R R ~ QG M
80 2 37 54 qus1 R Ring M 2Ideal R Q Ring 1 R R ~ QG M = 1 Q
81 80 simprd R Ring M 2Ideal R 1 R R ~ QG M = 1 Q
82 26 40 81 syl2anc φ r Base R m M 1 R = r R X + R m 1 R R ~ QG M = 1 Q
83 79 82 eqtrd φ r Base R m M 1 R = r R X + R m r R ~ QG M Q X R ~ QG M = 1 Q
84 18 21 83 rspcedvd φ r Base R m M 1 R = r R X + R m v Base Q v Q X R ~ QG M = 1 Q
85 6 snssd φ X Base R
86 51 85 unssd φ M X Base R
87 eqid RSpan R = RSpan R
88 87 13 35 rspcl R Ring M X Base R RSpan R M X LIdeal R
89 25 86 88 syl2anc φ RSpan R M X LIdeal R
90 87 13 rspssid R Ring M X Base R M X RSpan R M X
91 25 86 90 syl2anc φ M X RSpan R M X
92 91 unssad φ M RSpan R M X
93 91 unssbd φ X RSpan R M X
94 snssg X Base R X RSpan R M X X RSpan R M X
95 94 biimpar X Base R X RSpan R M X X RSpan R M X
96 6 93 95 syl2anc φ X RSpan R M X
97 96 7 eldifd φ X RSpan R M X M
98 13 25 4 89 92 97 mxidlmaxv φ RSpan R M X = Base R
99 56 98 eleqtrrd φ 1 R RSpan R M X
100 6 7 eldifd φ X Base R M
101 87 13 61 22 25 60 28 100 elrspunsn φ 1 R RSpan R M X r Base R m M 1 R = r R X + R m
102 99 101 mpbid φ r Base R m M 1 R = r R X + R m
103 84 102 r19.29vva φ v Base Q v Q X R ~ QG M = 1 Q